Краткое и общедоступное описание наиболее популярных беспроводных сетей стандарта 802.11, или Wi-Fi. Типы wifi
Виды Wi-Fi сетей | Роутеры
Из всей этой кучи широкого практического применения достигли IEEE 802.11b и IEEE 802.11g, и IEEE 802.11n – именно такие сети и подразумеваются в первую очередь при упоминании слова Wi-Fi. Сети 802.11b и 802.11g работают в диапазоне 2.4 ГГц и различаются скоростью передачи данных и радиусом действия. Любое беспроводное Wi-Fi оборудование соответствует стандартам 802.11.
Далее указывается буква, уточняющая версию стандарта, например:
- 802.11a — 54 Мбит/c, 5 ГГц стандарт (1999, выход продуктов в 2001)
- 802.11b — Улучшения к 802.11 для поддержки 5,5 и 11 Мбит/с (1999) с радиусом действия до 150 метров на открытом пространстве, и до 20-30 метров в помещении
- 802.11g — 54 Мбит/c, 2,4 ГГц стандарт (обратная совместимость с b) (2003) и радиус действия у них до 300 метров на открытом пространстве
- 802.11n — Увеличение скорости передачи данных (600 Мбит/c). 2,4-2,5 или 5 ГГц. Обратная совместимость с 802.11a/b/g. Радиус действия таких сетей достигает 450 метров.
Увы, но это — максимально достижимые скорости, а реальные будут меньше и составят около 25 МБит/с для 802.11g и 100 МБит/с для 802.11n.
Все современные точки доступа работают с 802.11b, 802.11g и 802.11n.
802.11b | 11 Мбит/с | 4-6 Мбит/с | 2.4 ГГц |
802.11a | 54 Мбит/с | 20-25 Мбит/с | 5 ГГц |
802.11g | 54 Мбит/с | 20-25 Мбит/с | 2.4 ГГц |
802.11n | 300 Мбит/с | 100 Мбит/с | 2.4/5 ГГц |
Дальность действия домашней Wi-Fi сети
Радиус действия домашней Wi-Fi сети зависит от типа используемой беспроводной точки доступа или беспроводного маршрутизатора. К факторам, определяющим диапазон действия беспроводных точек доступа или беспроводных маршрутизаторов, относятся:
- Тип используемого протокола 802.11;
- Общая мощность передатчика;
- Коэффициент усиления используемых антенн;
- Длина и затухание в кабелях, которыми подключены антенны;
- Природа препятствий и помех на пути сигнала в данной местности.
- Препятствия в виде кирпичных стен и металлических конструкций могут уменьшить радиус действия Wi-Fi сети на 25% и более.
Поскольку стандарт 802.11a использует частоты выше, чем стандарты 802.11b/g, он является наиболее чувствительным к различного рода препятствиям. На радиус действия Wi-Fi сетей, поддерживающих стандарт 802.11b или 802.11g, влияют также помехи, исходящие от микроволновых печей.
Ещё одним существенным препятствием может оказаться листва деревьев, поскольку она содержит воду, поглощающую микроволновое излучение данного диапазона. Проливной дождь ослабляет сигналы в диапазоне 2.4GHz с интенсивностью до 0.05 dB/км, густой туман вносит ослабление 0.02 dB/км, а в лесу (густая листа, ветви) сигнал может затухать с интенсивностью до 0.5 дб/метр.
Как увеличить дальность действия Wi-Fi сети?
Увеличить радиус действия Wi-Fi сети можно посредством объединения в цепь нескольких беспроводных точек доступа или маршрутизаторов, а также путём замены штатных антенн, установленных на сетевых картах и точках доступа, на более мощные.
К сожалению, технология Wi-Fi в силу своей слабой дальнобойности пока не в состоянии соединить хоть сколько-то удалённые друг от друга компьютеры, если они не находятся в прямой видимости. Достаточно пары железобетонных стен на пути сигнала, чтобы полностью его экранировать, а потому в реальной ситуации объединить в сеть можно только пользователей, расположенных в рядом.
Увеличение мощности роутера — рядовому потребителю не подходит. Хотя выбор точек доступа на сегодня огромен и в интернете можно найти даже достаточно мощные модели — мощностью более 200 mW (продукты RangeLAN от Proxim, точки доступа и базовые станции Vivato, Senao).
Второй способ, применение мощных узконаправленных антенн. В этом случае вся мощность, излучаемая точкой доступа, будет направляться в сторону удалённого ПК и появится шанс пробиться через серьёзные преграды.
routers.in.ua
Типы фреймов в сетях Wi-Fi
Типы фреймов 802.11
При анализе состояния беспроводных сетей WLAN или при решении проблем в них часто используются различные инструменты для анализа трафика 802.11, например Wireshark, AiroPeek и т.п.. После сбора пакетов необходимо проводить их обработку, понимая отличия в различных типах фреймов 802.11, чтобы сделать верные выводы о том, что сеть выполняет, а что нет. Далее рассмотрим наиболее распространенные типы фреймов 802.11 для лучшего понимания текущего статуса сети Wi-Fi или решения проблем.
Далее в тексте будут затрагиваться подходы для автономной и централизованной архитектур сети WLAN. Рекомендуем посмотреть отличия здесь.
Общая информация
Стандарт 802.11 определяет различные типы фреймов, которые точки доступа и сетевые карты пользовательских устройств с Wi-Fi используют для коммуникаций, управления и контроля беспроводного линка. Каждый фрейм имеет контрольное поле, которое определяет версию протокола 802.11, тип фрейма и различные индикаторы, как например: WPA включен, управление энергосбережением активно и т.п.. Дополнительно к этому все фреймы содержат МАС-адреса источника и получателя, номер фрейма в последовательности, тело фрейма и проверочную последовательность фрейма для коррекции ошибок. Фреймы 802.11 переносят протоколы и данные более высоких уровней модели OSI/ISO внутри тела фрейма. Например фрейм данных может транспортировать HTML-код какой-либо веб-страницы (со всеми необходимыми заголовками TCP/IP), используемой далее для отображения. Другие фреймы, которые станции используют для управления и контроля? несут специфическую информацию о беспроводном линке в теле фрейма. Например, тело фрейма Бикона содержит идентификатор сети WLAN: SSID, временные отметки (timestamp) и другую информацию о точке доступа.
Фреймы Управления (Management Frames)
Фреймы управления 802.11 позволяют устанавливать и поддерживать коммуникации. Существуют следующие подтипы фреймов управления 802.11:
• Фрейм аутентификации (Authentication frame)
Аутентификация в 802.11 это процесс в ходе которого точка доступа (а в централизованной архитектуре контроллер, после получения данных от точки доступа в его сегменте; чаще всего контроллер связан с ААА-сервером и, в действительности, перенаправляет запрос на ААА для анализа и ответа) разрешает или отвергает идентификационные данные от конечного устройства. Конечное устройство начинает процесс путем отправки фрейма аутентификации, содержащего его идентификационную информацию, к точке доступа. В случае открытой аутентификации, радиокарта конечного устройства отправляет фрейм аутентификации и точка доступа отвечает фреймом аутентифкации как ответ, означающий подтверждение (или отказ). В случае схем аутентифкации с shared key конечное устройство отправляет начальный фрейм аутентификации и точка доступа отвечает фреймом аутентифкации, содержащим специальную тестовую последовательность (challenge text). Конечное устройство должно далее отправить обратно зашифрованную версию тестовой последовательности (шифруется своим ключем) во фрейме аутентификации. Точка доступа (или контроллер)проверяет , что пользовательское устройство использует корректный ключ. По результатам проверки точка доступа отвечает пользовательскому устройству фреймом аутентифкации, содержащим результат аутентификации. И т.д. для всех остальных схем аутентификации.
• Фрейм деаутентификации (Deauthentication frame)
Пользовательское устройство отправляет фрейм деаутентификации к другому устройству, если хочет закончить безопасное соединение.
• Фрейм запроса на ассоциацию (Association request frame)
Ассоциация 802.11 инициирует точку доступа выделить и занять ресурсы для данной новой сессии и синхронизироваться с радиокартой устройства пользователя. Радиокарта пользовательского устройства начинает процесс ассоциации путем отправки фрейма запроса на ассоциацию к точке доступа. Этот фрейм содержит информацию о радиокарте устройства пользователя (например, поддерживаемые скорости передачи данных и т.п.) и SSID сети WLAN, с которой устройство хочет быть ассоциировано. После получения запроса на ассоциацию точка доступа решает вопрос по ассоциированию с радиокартой и, если принято положительное решение, резервирует область памяти и формирует идентификатор сессии для данной радиокарты (устройства пользователя).
• Фрейм ответа на запрос ассоциации (Association response frame)
Точка доступа отправляет фрейм ответа на запрос ассоциации, который содержит уведомление о подтверждении или отказе на запрос радиокарты об ассоциации. Если точка доступа подтверждает ассоциацию пользовательского устройства, то фрейм ответа включает информацию о данной ассоциации, например идентификатор ассоциации и поддерживаемые скорости передачи данных. Если результат ответа положителен, то радиокарта пользовательского устройства может использовать данную точку доступа для взаимодействия с другими радиокартами на других пользовательских устройствах в сети. В случае централизованной архитектуры, как правило, обмен трафиком осуществляется не напрямую между точками доступа, а проходит и контролируется на контроллере WLAN.
• Фрейм повторного запроса ассоциации (Reassociation request frame)
Если мобильное устройство пользователя выполняет роуминг от текущей точки доступа к другой точке доступа, которая имеет больший уровень сигнала бикона, то радиокарта мобильного устройства будет отправлять фрейм повторного запроса на ассоциацию к новой точке доступа. Новая точка доступа затем координирует пересылку данных, которые могут все ещё находиться в буфере предыдущей точки доступа и ожидать передачи на данное мобильное устройство (при централизованной архитектуре роумингом управляет контроллер WLAN).
• Фрейм ответа на повторный запрос ассоциации (Reassociation response frame)
Точка доступа отправляет фрейм ответа на повторный запрос ассоциации, который содержит сообщение подтверждения или отказа для радиокарты мобильного устройства, запрашивающего ассоциацию с сетью. Подобно процессу ассоциации фрейм включает информацию относительно ассоциации, как, например, идентификатор сессии ассоциации и поддерживаемые скорости передачи данных.
• Фрейм остановки ассоциации (Disassociation frame)
Мобильное устройство отправляет фрейм остановки ассоциации другому устройству, если возникает «желание» закончить ассоциацию. Например, радиокарта, которая была выключена правильным образом может отправить фрейм остановки ассоциации для того чтобы известить точку доступа, что данное устройсто выключается. В таком случае точка доступа может сразу на основании данной информации освободить память, занятую данной ассоциацией, и удалить данную радиокарту из таблицы ассоциаций.
• Фрейм Бикон (Beacon frame)
Точка доступа периодически отправляет Биконы для анонсирования своего присутствия и предоставления необходимой информации (SSID, триггеры и т.п.) всем устройствам в зоне ее покрытия. Радиокарты пользовательских устройств периодически сканируют все каналы 802.11 и слушают биконы, как основу для выбора лучшей точки доступа для ассоциации.
• Фрейм-запрос Проба (Probe request frame)
Мобильные устройства отправляют фреймы-запросы Пробы, чтобы получить информацию от другого устройства. Например радиокарта мобильного устройства отправлет Пробы-запросы, чтобы определить какие точки доступа находятся внутри зоны покрытия.
• Фрейм-ответ на Пробу (Probe response frame)
Устройства будут отвечать фреймом-ответом на полученный фрейм-запрос Проба. Фрейм-ответ Проба содержит информацию о функциональности, поддерживаемых скоростях передачи данных и т.п.
Фреймы Контроля (Control Frames)
Фреймы контроля 802.11 помогают в доставке фреймов данных между станциями и между станциями и точками доступа. Пример подтипов фреймов контроля:
• Фрейм Запрос на Отправку (Request to Send (RTS) frame)
Функция RTS/CTS является опциональной и разработана для уменьшения количества коллизий при пересылке фреймов, когда присутствуют скрытые устройства, имеющие ассоциацию с той же точкой доступа (пример: в зоне покрытия точки доступа есть мощная капитальная стена и два смартфона с двух сторон прекрасно слышат эту точку, но не слышат друг друга). Мобильные устройства отправляют RTS фрейм к другому устройству, как первую фазу в двухшаговом процессе, необходимом до отправки фрейма данных.
• Фрейм подтверждения Чистоты Радиоканала для Отправки (Clear to Send (CTS) frame)
Мобильное устройство (или точка) отвечает на фрейм RTS фреймом CTS, подтверждая тем самым для запрашивающего устройства чистоту канала для отправки фрейма данных. Фрейм CTS включает параметр времени, на которое все другие устройства (включая скрытые устройства) Не должны передавать какие-либо фреймы в течении периода, который требуется запрашивающему устройству на передачу его фрейма. Данная функция минимизирует коллизии даже при наличии скрытых устройств и ведет к увеличению общей пропускной способности точки доступа при правильной имплементации.
• Фрейм Подтверждение (Acknowledgement (ACK) frame)
После получения фрейма данных устройство-получатель запускает процесс проверки фрейма на ошибки. Если ошибок не обнаружено, то устройство-получатель будет отправлять фрейм Подтверждение к устройству-отправителю. Если устройство-отправитель не получило фрейм Подтверждение после определенного периода времени, то отправитель должен перепослать фрейм заново (в 802.11 все юникастовые фреймы данных должны быть подтверждены, иначе устройство-отправитель будет перепосылать их заново, снижая тем самым производительность системы).
Фреймы Данных
Естественно основная задача сети WLAN это передача данных. Стандарт 802.11 определяет тип фремов: фрейм Данных, который переносит пакеты вышерасположенных уровней, таких как веб-страницы и т.п. внутри тела самого фрейма. Если посмотреть фреймы 802.11 через анализатор пакетов, то можно наблюдать контент тела фрейма и увидеть какие пакеты данных находятся внутри фрейма данных при транспортировке.
Более подробная информация по фреймам стандарта 802.11 представлена у нас на сайте в разделе Технологии.
Для получения анонсов по выходу новых статей или появлении новых материалов на нашем сайте предлагаем подписаться на рассылку.
Присоединяйтесь к нашей группе на Facebook: www.facebook.com/Wi.Life.ruМы публикуем интересные новости о Wi-Fi со всего света, информацию о выходе новых статей и расширении контента основных модулей ресурса Wi-Life.ru
Wi-Life.Team
Использование материалов сайта Wi-Life.ru разрешено только с согласия Wi-Life.ru и при наличии прямой ссылки на Wi-Life.ru
Please enable JavaScript to view the comments powered by Disqus. blog comments powered by
wi-life.ru
Краткое и общедоступное описание наиболее популярных беспроводных сетей стандарта 802.11, или Wi-Fi.
Всё популярней и популярней в нашей жизни становятся беспроводные сети. Благодаря им мы можем пользоваться возможностями интернета по дороге на работу в автомобиле или в общественном транспорте, ужиная в ресторане или обедая в кафе, ведь важно только находиться в радиусе действия ближайшей точки доступа.
Также можно объединить компьютеры всех сотрудников офиса в беспроводную сеть, избавившись от надоевших бесконечных кабелей. И, когда Вы находитесь в собственном доме, то ничто не помешает вам работать с ноутбуком именно там, где удобно именно Вам – в любой комнате, на балконе или даже в саду, совершенно не задумываясь о наличии сетевого провода и его длине.
Абсолютное большинство современных ноутбуков, КПК, смартфонов и других портативных устройств имеют специальные средства для использования беспроводных сетей. А при отсутствии встроенных возможностей несложно приобрести их дополнительно. Для смартфонов и КПК с SDIO разъёмом это Wi-Fi SDIO карта (стоимость от 50$), для ноутбуков – WI-FI-карточки для PCMCIA разъёмов или внешние USB-адаптеры (стоимость от 15$).
Сетевые стандарты IEEE
Чаще всего мы сталкиваемся с сетями следующих стандартов:
- IEEE 802.11, или локальные беспроводные сети, Wi-Fi;
- IEEE 802.3 - сети на витой паре (LAN – Local Area Network) – обычный Ethernet;
- IEEE 802.15 - Bluetooth или WPAN (Wireless personal area network), «персональные», сети малого радиуса действия;
- IEEE 802.15 - WiMax.
Стандарт IEEE 802.11 - Wi-Fi
Официально стандарт на локальные беспроводные сети, или WLAN (Wireless Local Area Network), именуется как 802.11, и был разработан Институтом инженеров по электротехнике (IEEE, Institute of Electrical and Electronics Engineers). Название Wi-Fi, используемое конечными потребителями этой технологии, стало аббревиатурой словосочетания «wireless fidelity», переводящегося как «беспроводная безукоризненность».
Рассмотрим разновидности стандарта IEEE 802.11. Всего он подразделяется на 12 категорий – IEEE 802.11(X), где X – английские буквы от a до k и n (a, b, c, d, e, f, g, h, i, j, k, n). Только три из них – IEEE 802.11b, IEEE 802.11g и 802.11n достигли повсеместного практического применения. То есть именно эти сети подразумевают при использовании слова Wi-Fi.
Различия между ними следующие:
- 802.11b – максимальная скорость – 11Мбит/сек, радиус действия в помещении – до 30 м.
- 802.11g – максимальная скорость – 54Мбит/сек, радиус действия – до 50 м.
- 802.11n – максимальная скорость – 300-600Мбит/сек, радиус действия – до 100 м.
Все нынешние точки доступа обязательно поддерживают оба стандарта, более современные работают и со стандартом 802.11n. Обязательно стоит учесть не только тип беспроводной точки (точка доступа – это устройство, посредством которого между клиентами беспроводной сети поддерживается связь) или маршрутизатора, но и другие факторы, такие как:
- Мощность передатчика;
- Длину и затухание в кабелях, к которым присоединены антенны;
- Тип помех и препятствий в данном районе, находящихся на пути сигнала;
- Различные строения.Например, металлические сооружения и металлические конструкции способны уменьшить максимальный радиус действия до 20 и более процентов;
- Погодные условия и растительность. Проливной дождь, густая листва деревьев и кустарников способствует затуханию колебаний волн Wi-Fi сетей.
Есть разные способы увеличения радиуса действия беспроводных сетей. Например, объединение в цепь нескольких точек доступа или замена штатных антенн на более мощные и современные. С помощью специального "калькулятора", можно приблизительно рассчитать скорость работы и радиус действия сети.
lantorg.com
Типы беспроводных сетей. Беспроводные сети, так же как и проводные, можно разделить на различные типы в зависимости от радиуса действия при передаче данных:
Беспроводные глобальные сети (WWAN)
Беспроводные городские сети (WMAN)
Беспроводные локальные сети (WLAN)
Беспроводные персональные сети (WPAN)
Беспроводные глобальные сетиWWANпозволяют пользователям устанавливать беспроводные сетевые соединения поверх удаленных общих или частных сетей. Такие соединения могут обслуживаться на значительной территории (например, города или страны) при помощи сети станций подключения или спутников, принадлежащих поставщикам услуг беспроводной связи. Используемые в настоящее время технологииWWANназываются сетями второго поколения(2G).Основу их составляют сети сотовой связи Global System for Mobile Communications (GSM), Cellular Digital Packet Data (CDPD) и Code Division Multiple Access (CDMA). В данный момент усилия направлены на переход от сетей2G,некоторые из которых имеют ограниченные возможности роуминга и несовместимы друг с другом, к сетям третьего поколения(3G), соответствующим общему стандарту и предоставляющим возможности роуминга по всему миру. Стандарт сетей3Gактивно продвигается Международным Телекоммуникационным СоюзомITU.
Беспроводные городские сети WMANпозволяют устанавливать беспроводные сетевые соединения между различными точками в пределах большого города (например, между двумя офисными зданиями в городе или на территории университета) без дорогостоящей прокладки оптоволоконных или медных кабелей или аренды каналов связи. Кроме того, они могут служить резервными каналами для проводных соединений, если основные кабельные каналы выходят из строя. Для передачи данных в сетяхWMAN используются как радиоволны, так и инфракрасное излучение. Спрос на услуги беспроводных сетей, предоставляющих пользователям высокоскоростной доступ к сети Интернет, постоянно увеличивается. Поскольку используются различные технологии, такие какmultichannel multipoint distribution service (MMDS)иlocal multipoint distributionservices (LMDS), рабочая группаIEEE802.16 по стандартам широкополосного беспроводного доступа продолжает разработку спецификаций для стандартизации данных технологий.
Cтандарт беспроводных городских сетей (WirelessMAN I EEE 802.16) был принят в 2002 году. В дополнение к спецификациям стандартаIEEE802.16, в 2003 г. был введен стандартIEEE 802.16a. Первый стандарт описывал спецификацию интерфейса модуляции с одной несущей (SC - Single Carrier), работающего на частотах от 10 до 66 ГГц. Cтандарт открывает возможности создания систем стационарного беспроводного широкополосного доступа, которые станут недорогой заменой оптоволоконным кабелям при создании городских сетей. По стандарту 802.16, операторы могут устанавливать базовые станции, подключенные к общей сети. Каждая из станций может поддерживать сотни абонентских станций.
802.16aучитывает тонкости распределения спектра в диапазоне 10-66 ГГц. Он определяет три режима "физического уровня" соединений. Предусмотрен режим с одной несущей для специальных нужд, но при этом добавлено OFDM - мультиплексирование с ортогональным разделением частоты на 256 каналов, которое разбивает радиоканал на множество каналов, что позволяет увеличить скорость обмена, за счет параллельной передачи данных. Дополнительно появляется возможность отстроиться от помех, возникающих в результате многолучевого распространения сигнала. Ортогональное размещение поднесущих обеспечивает передачу результирующего сигнала в более узком спектре по сравнению с другими методами мультиплексирования. Еще одно дополнение - мультиплексирование OFDMA на 2048 каналов, предоставляющее возможности улучшенного мультиплексирования в сетях с несколькими уровнями.
Беспроводные локальные сети WLANпозволяют устанавливать беспроводные сетевые соединения на ограниченной территории (например, внутри офисного или университетского здания или в таких общественных местах, как аэропорты). Они могут использоваться во временных офисах или в других местах, где прокладка разветвленной кабельной системы невозможна, а также в качестве дополнения к имеющейся проводной локальной сети, призванного обеспечить пользователям возможность работать перемещаясь по зданию. Существуют два способа создания сетейWLAN. В инфраструктурных сетяхWLANбеспроводные станции (устройства, оборудованные адаптерами радиосети или внешними модемами), подключаются к точкам беспроводного доступа, выполняющим функцию моста между станциями и существующей магистральной сетью. В одноранговых (в данном случае) сетяхWLANнесколько пользователей на ограниченной территории (например, в комнате для переговоров) формируют временную сеть без использования точек доступа, если не требуется доступ к внешним сетевым ресурсам. Одной из самых распространенных технологий являетсяWi-Fi (Wireless-Fidelity)
studfiles.net
Что такое Wi-Fi? Принципы работы Wi-Fi - Высокоскоростной интернет в Украине - Какой подключить
Wi-Fi (англ. Wireless Fidelity — «беспроводная точность») — стандарт на оборудование Wireless LAN.
Разработан консорциумом Wi-Fi Alliance на базе стандартов IEEE 802.11, «Wi-Fi» — торговая марка «Wi-Fi Alliance». Технологию назвали Wireless-Fidelity (дословно «беспроводная точность») по аналогии с Hi-Fi.
Установка Wireless LAN рекомендовалась там, где развёртывание кабельной системы было невозможно или экономически нецелесообразно. В нынешнее время во многих организациях используется Wi-Fi, так как при определенных условиях скорость работы сети уже превышает 100 Мбит/сек. Пользователи могут перемещаться между точками доступа по территории покрытия сети Wi-Fi.
Мобильные устройства (КПК, смартфоны и ноутбуки), оснащённые клиентскими Wi-Fi приёмо-передающими устройствами, могут подключаться к локальной сети и получать доступ в Интернет через точки доступа или хотспоты.
История
Wi-Fi был создан в 1991 NCR Corporation/AT&T (впоследствии — Lucent и Agere Systems) в Ньивегейн, Нидерланды. Продукты, предназначавшиеся изначально для систем кассового обслуживания, были выведены на рынок под маркой WaveLAN и обеспечивали скорость передачи данных от 1 до 2 Мбит/с. Вик Хейз (Vic Hayes) — создатель Wi-Fi — был назван «отцом Wi-Fi» и находился в команде, участвовавшей в разработке таких стандартов, как IEEE 802.11b, 802.11a и 802.11g. В 2003 Вик ушёл из Agere Systems. Agere Systems не смогла конкурировать на равных в тяжёлых рыночных условиях, несмотря на то, что её продукция занимала нишу дешёвых Wi-Fi решений. 802.11abg all-in-one чипсет от Agere (кодовое имя: WARP) плохо продавался, и Agere Systems решила уйти с рынка Wi-Fi в конце 2004 года.
Принцип работы
Обычно схема Wi-Fi сети содержит не менее одной точки доступа и не менее одного клиента. Также возможно подключение двух клиентов в режиме точка-точка, когда точка доступа не используется, а клиенты соединяются посредством сетевых адаптеров «напрямую». Точка доступа передаёт свой идентификатор сети (SSID) с помощью специальных сигнальных пакетов на скорости 0.1 Мбит/с каждые 100 мс. Так что 0.1 Мбит/с — наименьшая скорость передачи данных для Wi-Fi. Зная SSID сети, клиент может выяснить, возможно ли подключение к данной точке доступа. При попадании в зону действия двух точек доступа с идентичными SSID, приёмник может выбирать между ними на основании данных об уровне сигнала. Стандарт Wi-Fi даёт клиенту полную свободу при выборе критериев для соединения. Более подробно с принципом работы можно познакомиться в официальном тексте стандарта.
Преимущества Wi-Fi
* Позволяет развернуть сеть без прокладки кабеля, может уменьшить стоимость развёртывания и расширения сети. Места, где нельзя проложить кабель, например, вне помещений и в зданиях, имеющих историческую ценность, могут обслуживаться беспроводными сетями.
* Wi-Fi-устройства широко распространены на рынке. А устройства разных производителей могут взаимодействовать на базовом уровне сервисов.
* Wi-Fi — это набор глобальных стандартов. В отличие от сотовых телефонов, Wi-Fi оборудование может работать в разных странах по всему миру.
Недостатки Wi-Fi
* Частотный диапазон и эксплуатационные ограничения в различных странах неодинаковы; во многих европейских странах разрешены два дополнительных канала, которые запрещены в США; В Японии есть ещё один канал в верхней части диапазона, а другие страны, например Испания, запрещают использование низкочастотных каналов. Более того, некоторые страны, например Италия, требуют регистрации всех Wi-Fi сетей, работающих вне помещений, или требуют регистрации Wi-Fi-оператора.
* Высокое по сравнению с другими стандартами потребление энергии, что уменьшает время жизни батарей и повышает температуру устройства.
* Самый популярный стандарт шифрования WEP может быть относительно легко взломан[источник?] даже при правильной конфигурации (из-за слабой стойкости алгоритма). Несмотря на то, что новые устройства поддерживают более совершенный протокол шифрования данных WPA, многие старые точки доступа не поддерживают его и требуют замены. Принятие стандарта IEEE 802.11i (WPA2) в июне 2004 сделало доступной более безопасную схему, которая доступна в новом оборудовании. Обе схемы требуют более стойкий пароль, чем те, которые обычно назначаются пользователями. Многие организации используют дополнительное шифрование (например VPN) для защиты от вторжения.
* Wi-Fi имеют ограниченный радиус действия. Типичный домашний Wi-Fi маршрутизатор стандарта 802.11b или 802.11g имеет радиус действия 45 м в помещении и 90 м снаружи. Микроволновка или зеркало, расположенные между устройствами Wi-Fi, ослабляют уровень сигнала. Расстояние зависит также от частоты.
* Наложение сигналов закрытой или использующей шифрование точки доступа и открытой точки доступа, работающих на одном или соседних каналах может помешать доступу к открытой точке доступа. Эта проблема может возникнуть при большой плотности точек доступа, например, в больших многоквартирных домах, где многие жильцы ставят свои точки доступа Wi-Fi.
* Неполная совместимость между устройствами разных производителей или неполное соответствие стандарту может привести к ограничению возможностей соединения или уменьшению скорости.
* Уменьшение производительности сети во время дождя.
* Перегрузка оборудования при передаче небольших пакетов данных из-за присоединения большого количества служебной информации.
* Малая пригодность для работы приложений использующих медиа-потоки в реальном времени (например протокол RTP, применяемый в IP-телефонии): качество медийного потока непредсказуемо из-за возможных высоких потерь при передаче данных, обусловленных целым рядом неконтролируемых пользователем факторов (атмосферные помехи, ландшафт и иное, в частности перечисленное выше). Несмотря на данный недостаток, выпускается масса VoIP оборудования на базе устройств 802.11b\g, которое ориентировано в том числе и на корпоративный сегмент: однако в большинстве случаев документация к подобным устройствам содержит оговорку, гласящую, что качество связи определяется устойчивостью и качеством радио канала.
Коммерческое использование Wi-Fi
Коммерческий доступ к сервисам на основе Wi-Fi предоставляется в таких местах, как интернет-кафе, аэропорты и кафе по всему миру (обычно эти места называют Wi-Fi-кафе), однако их покрытие можно считать точечным по сравнению с сотовыми сетями:
* Ozone и OzoneParis Во Франции. В сентябре 2003 года Ozone начала развёртывание сети OzoneParis через The City of Lights. Конечная цель — создание централизованной сети Wi-Fi, полностью покрывающей Париж. Основной принцип Ozone Pervasive Network заключается в том, что это сеть национального масштаба.
* WiSE Technologies предоставляет коммерческий доступ в аэропортах, университетах, и независимых кафе на территории США.
* T-Mobile обеспечивает работу хотспотов для сети Starbucks в США и Великобритании, а также более 7500 хотспотов в Германии.
* Pacific Century Cyberworks обеспечивает доступ в магазинах Pacific Coffee в Гонконге.
* Columbia Rural Electric Association пытается развернуть сеть 2.4 GHz Wi-Fi на территории площадью 9,500 км², расположенной между округами Уалла-Уалла и Колумбия в штате Вашингтон и Юматилла, Орегон; В список других крупных сетей в США также входят: Boingo, Wayport и iPass.
* Sify, Индийский Интернет-провайдер, установил 120 точек доступа в Бангалоре, в отелях, галереях и правительственных учреждениях.
* Vex имеет большую сеть хотспотов, расположенную по всей территории Бразилии. Telefónica Speedy WiFi начала предоставлять свои сервисы в новой растущей сети, распространившейся на территорию штата São Paulo.
* BT Openzone владеет многими хотспотами в Великобритании, работающими в McDonald's, и имеет роуминговое соглашение с T-Mobile UK и ReadyToSurf. Их клиенты также имеют доступ к хотспотам The Cloud.
* Netstop обеспечивает доступ в Новой Зеландии.
* Компания Golden Telecom осуществляет поддержку самой большой в мире[1] городской Wi-Fi сети в Москве, а также предоставляет свои каналы связи для реализации проекта Яндекс. Wi-Fi ([1]). Каналы доступа к проводной сети обеспечивает крупнейший московский провайдер Корбина Телеком
* Компания EarthLink планирует в третьем квартале 2007 года полностью подключить Филадельфию (США) к беспроводной сети Интернет. Это будет первый город-мегаполис в США, который будет полностью охвачен Wi-Fi. Стоимость будет в пределах 20-22 доллара в месяц при скорости подключения 1 Мбит/сек. Для малоимущих жителей Филадельфии стоимость будет составлять 12-15 долларов в месяц. В настоящее время центр города и прилегающие к нему районы уже подключены. Подключение остальных районов будет производиться по мере установки передатчиков.
Беспроводные технологии в промышленности
Для использования в промышленности технологии Wi-Fi предлагаются пока ограниченным числом поставщиков. Так Siemens Automation & Drives предлагает Wi-Fi решения для своих контроллеров SIMATIC в соответствии со стандартом IEEE 802.11g в свободном ISM-диапазоне 2,4-ГГц и обеспечивающем максимальную скорость передачи 11 Мбит/с. Данные технологии применяются в основном для управления движущимися объектами и в складской логистике, а также в тех случаях, когда по какой-либо причине невозможно прокладывать проводные сети Ethernet.
Wi-Fi и телефоны сотовой связи
Некоторые считают, что Wi-Fi и подобные ему технологии со временем могут заменить сотовые сети, такие как GSM. Препятствиями для такого развития событий в ближайшем будущем являются отсутствие роуминга и возможностей аутентификации (см. 802.1x, SIM-карты и RADIUS), ограниченность частотного диапазона и сильно ограниченный радиус действия Wi-Fi. Более правильным выглядит сравнение Wi-Fi с другими стандартами сотовых сетей, таких как UMTS или CDMA.
Тем не менее, Wi-Fi идеален для использования VoIP в корпоративных сетях или в среде SOHO. Первые образцы оборудования были доступны уже в начале 90-х, однако не поступали в коммерческую эксплуатацию до 2005 года. Тогда компании Zyxel, UT Starcomm, Samsung, Hitachi и многие другие представили на рынок VoIP Wi-Fi телефоны по «разумным» ценам. В 2005 ADSL ISP провайдеры начали предоставлять услуги VoIP своим клиентам (например нидерландский ISP XS4All). Когда звонки с помощью VoIP стали очень дешёвыми, а зачастую вообще бесплатными, провайдеры, способные предоставлять услуги VoIP, получили возможность открыть новый рынок — услуг VoIP. GSM телефоны с интегрированной поддержкой возможностей Wi-Fi и VoIP начали выводиться на рынок, и потенциально они могут заменить проводные телефоны.
В настоящий момент непосредственное сравнение Wi-Fi и сотовых сетей нецелесообразно. Телефоны, использующие только Wi-Fi, имеют очень ограниченный радиус действия, поэтому развёртывание таких сетей обходится очень дорого. Тем не менее, развёртывание таких сетей может быть наилучшим решением для локального использования, например, в корпоративных сетях. Однако устройства, поддерживающие несколько стандартов, могут занять значительную долю рынка.
Международные проекты
Другая бизнес-модель состоит в соединении уже имеющихся сетей в новые. Идея состоит в том, что пользователи будут разделять свой частотный диапазон через персональные беспроводные роутеры, комплектующиеся специальным ПО. Например FON — испанская компания, созданная в ноябре 2005. Она намеревается стать самой большой сетью хотспотов в мире к концу 2006 с 30 000 точками доступа. Пользователи делятся на три категории:
* linus — выделяющие бесплатный доступ в Интернет,
* bills — продающие свой частотный диапазон,
* aliens — использующие доступ через bills.
Таким образом, система аналогична пиринговым сервисам. Несмотря на то, что FON получает финансовую поддержку от таких компаний, как Google и Skype, лишь со временем будет ясно, будет ли эта идея действительно работать.
Сейчас у этого сервиса есть три основные проблемы. Первая заключается в том, что для перехода проекта из начальной стадии в основную требуется больше внимания со стороны общественности и СМИ. Нужно также учитывать тот факт, что предоставление доступа к вашему Интернет-каналу другим лицам может быть ограничено вашим договором с интернет-провайдером. Поэтому Интернет-провайдеры будут пытаться защитить свои интересы. Так же, скорее всего, поступят звукозаписывающие компании, выступающие против свободного распространения MP3. И в третьих, программное обеспечение FON всё ещё находится в стадии бета-тестирования, и остаётся только ждать, когда будет решена проблема безопасности.
Wi-Fi в игровой индустрии
* Wi-Fi совместим с игровыми консолями и КПК и позволяет вести сетевую игру через любую точку доступа.
* Все игровые консоли седьмого поколения имеют поддержку стандартов Wi-Fi IEEE 802.11g.
* Sony PSP имеет поддержку беспроводной сети, которая включается нажатием одной кнопки, для соединения с Wi-Fi хотспотами или других беспроводных соединений.
Некоммерческое использование Wi-Fi
Пока коммерческие сервисы пытаются использовать существующие бизнес-модели для Wi-Fi, многие группы, сообщества, города, и частные лица строят свободные Wi-Fi сети, часто используя общее пиринговое соглашение для того, чтобы сети могли свободно взаимодействовать друг с другом.
Многие муниципалитеты объединяются с локальными сообществами, чтобы расширить свободные Wi-Fi сети. Некоторые группы строят свои Wi-Fi сети, полностью основанные на добровольной помощи и пожертвованиях.
Для получения более подробной информации смотрите раздел совместные беспроводные сети, где можно также найти список свободных Wi-Fi сетей, расположенных по всему миру (см. также Бесплатные точки доступа Wi-Fi в Москве).
OLSR (en) — один из протоколов, используемых для создания свободных сетей. Некоторые сети используют статическую маршрутизацию, другие полностью полагаются на OSPF. В Израиле разрабатывается протокол WiPeer для создания бесплатных P2P-сетей на основе Wi-Fi.
В Wireless Leiden разработали собственное программное обеспечение для маршрутизации под названием LVrouteD для объединения Wi-Fi сетей, построенных на полностью беспроводной основе. Бо́льшая часть сетей построена на основе ПО с открытым кодом, или публикуют свою схему под открытой лицензией. См. например «WiFi Liberator» [2] (превращает любой ноутбук с установленной MAC OS Х и Wi-Fi-модулем в открытый узел Wi-Fi-сети).
Некоторые небольшие страны и муниципалитеты уже обеспечивают свободный доступ к Wi-Fi хотспотам и доступ к Интернету через Wi-Fi по месту жительства для всех. Например, Королевство Тонга или Эстония, которые имеют большое количество свободных Wi-Fi хотспотов по всей территории страны. В Париже, OzoneParis предоставляет свободный доступ в Интернет неограниченно всем, кто способствует развитию Pervasive Network, предоставляя крышу своего дома для монтажа Wi-Fi сети. Unwire Jerusalem — это проект установки свободных точек доступа Wi-Fi в крупных торговых центрах Иерусалима. Многие университеты обеспечивают свободный доступ к Интернет через Wi-Fi для своих студентов, посетителей и всех, кто находится на территории университета.
Некоторые коммерческие организации, такие как Panera Bread, предоставляют свободный доступ к Wi-Fi постоянным клиентам. McDonald’s Corporation тоже предоставляют доступ к Wi-Fi под брендом 'McInternet'. Этот сервис был запущен в ресторане в Оук-Брук, Иллинойс; он также доступен во многих ресторанах в Лондоне.
Тем не менее, есть и третья подкатегория сетей, созданных сообществами и организациями, такими как университеты, где свободный доступ предоставляется членам сообщества, а тем, кто в него не входит, доступ предоставляется на платной основе. Пример такого сервиса — сеть Sparknet в Финляндии. Sparknet также поддерживает OpenSparknet — проект, в котором люди могут делать свои собственные точки доступа частью сети Sparknet, получая от этого определённую выгоду.
В последнее время коммерческие Wi-Fi провайдеры строят свободные Wi-Fi хотспоты и хотзоны. Они считают, что свободный Wi-Fi-доступ привлечёт новых клиентов и инвестиции вернутся.
Российский Wi-Fi Альянс
* 5 октября 2008 года был создан Российский Wi-Fi Альянс (Wi-Fi Alliance), объединяющий всехWi-Fi провайдеров, предоставляющих эту услугу на бесплатной основе. Главным отличием проекта является объединение только бесплатных Wi-Fi хотспотов.
* Все провайдеры и операторы, состоящие в Wi-Fi Альянсе помечают свои зоны специальным стикером "Бесплатный Wi-Fi здесь".
* Информацию по точкам доступа в разных городах можно найти на официальном сайте
Wi-Fi и ПО
* ОС семейства BSD (FreeBSD, NetBSD, OpenBSD) могут работать с большинством адаптеров, начиная с 1998 года. Драйверы для чипов Atheros, Prism, Harris/Intersil и Aironet (от соответствующих производителей Wi-Fi устройств) обычно входят в ОС BSD начиная с версии 3. Darwin и Mac OS X, несмотря на частичное совпадение с FreeBSD, имеют свою собственную, уникальную реализацию. В OpenBSD 3.7, было включено больше драйверов для беспроводных чипов, включая RealTek RTL8180L, Ralink RT25x0, Atmel AT76C50x, и Intel 2100 и 2200BG/2225BG/2915ABG. Благодаря этому частично удалось решить проблему нехватки открытых драйверов беспроводных чипов для OpenBSD. Возможно некоторые драйверы, реализованные для других BSD-систем, могут быть перенесены, если они ещё не были созданы. NDISwrapper также доступен для FreeBSD.
* GNU/Linux: Начиная с версии 2.6, поддержка некоторых Wi-Fi устройств появилась непосредственно в ядре Linux. Поддержка для чипов Orinoco, Prism, Aironet, Atmel, Ralink включена в основную ветвь ядра, чипы ADMtek и Realtek RTL8180L поддерживаются как закрытыми драйверами производителей, так и открытыми, написанными сообществом. Intel Calexico поддерживаются открытыми драйверами, доступными на SourceForge.net. Atheros поддерживается через открытые проекты. Поддержка других беспроводных устройств доступна при использовании открытого драйвера NDISwrapper, который позволяет Linux-системам, работающим на компьютерах с архитектурой Intel x86, «оборачивать» драйвера производителя для Microsoft Windows для прямого использования. Известна по крайней мере одна коммерческая реализация этой идеи. FSF создало список рекомендуемых адаптеров, более подробную информацию можно найти на сайте Linux wireless.
* Существует довольно большое количество Linux‐based прошивок для беспроводных роутеров, распространяемых под лицензией GNU GPL. К ним относятся так называемая «прошивка от Олега»[3], FreeWRT, OpenWRT, X-WRT, DD-WRT и т. д. Как правило, они поддерживают гораздо больше функций, чем оригинальные прошивки. Необходимые сервисы легко добавляются путём установки соответствующих пакетов. Список поддерживаемого оборудования постоянно растёт.
* В ОС семейства Microsoft Windows поддержка Wi-Fi обеспечивается, в зависимости от версии, либо посредством драйверов, качество которых зависит от поставщика, либо средствами самой Windows.
o Ранние версии Windows, такие как Windows 2000 и младше, не содержат встроенных средств для настройки и управления, и тут ситуация зависит от поставщика оборудования.
o Microsoft Windows XP поддерживает настройку беспроводных устройств. И хотя первоначальная версия включала довольно слабую поддержку, она значительно улучшилась с выходом Service Pack 2, а с выходом Service Pack 3 была добавлена поддержка WPA2.
o Microsoft Windows Vista содержит улучшенную по сравнению с Windows XP поддержку Wi-Fi.
o Microsoft Windows 7 поддерживает все современные на момент её выхода беспроводные устройства и протоколы шифрования.
Законный статус
Законный статус Wi-Fi различен в разных странах. В США диапазон 2.5 ГГц разрешается использовать без лицензии, при условии, что мощность не превышает определенную величину, и такое использование не создает помех тем, кто имеет лицензию.
В России использование Wi-Fi без разрешения на использование частот от Государственной комиссии по радиочастотам (ГКРЧ) возможно для организации сети внутри зданий, закрытых складских помещений и производственных территорий [4]. Для легального использования внеофисной беспроводной сети Wi-Fi (например, радиоканала между двумя соседними домами) необходимо получение разрешения на использование частот. Действует упрощенный порядок выдачи разрешений на использование радиочастот в полосе 2400—2483,5 МГц (стандарты 802.11b и 802.11g), для получения такого разрешения не требуется частное решение ГКРЧ. Для использования радиочастот в других диапазонах, в частности 5 ГГц (стандарт 802.11a), необходимо предварительно получить частное решение ГКРЧ [5]. В 2007 году ситуация изменилась с выходом документа: "Постановление от 25 июля 2007 г. N 476 О внесении изменений в постановление Правительства Российской Федерации от 12 октября 2004 г. # 539 «О порядке регистрации радиоэлектронных средств и высокочастотных устройств» [6]. Вкратце постановление изложено тут: [7], где из списка оборудования, подлежащего регистрации шестнадцатым пунктом исключено: Пользовательское (оконечное) оборудование радиодоступа (беспроводного доступа) в полосе радиочастот 2400—2483,5 МГц с мощностью излучения передающих устройств до 100 мВт включительно. Но, манипулируя неявным определением «оконечное оборудование» (так как оконечным оборудованием так же может считаться и сетевой концентратор конечной магистральной точки) некоторые представители региональных ГКРЧ, являясь одновременно и провайдерами услуг связи в отдельных регионах РФ, обращают изменения Постановления N 476 в удобную себе сторону.[источник?]
За нарушение порядка использования радиоэлектронных средств предусматривается ответственность по статьям 13.3 и 13.4 Кодекса Российской Федерации об административных правонарушениях (КоАП РФ) [8]. Так, в июле 2006 года несколько компаний в Ростове-на-Дону были оштрафованы за эксплуатацию открытых сетей Wi-Fi (хот-спотов) [9]. Совсем недавно Федеральная служба по надзору в сфере массовых коммуникаций, связи и охраны культурного наследия издало новое разъяснение использования и регистрации всех устройств, использующих Wi-Fi [10]. Позднее оказалось, что существует комментарий Россвязьохранкультуры [11], который частично опровергает недоразумения, развитые сетевыми СМИ.
На территории Украины использование Wi-Fi без разрешения УДЦР (Український державний центр радіочастот) возможно лишь в случае использования точки доступа со стандартной всенаправленной антенной (<6 Дб, мощность сигнала ≤ 100 мВт на 2.4 ГГц и ≤ 200 мВт на 5 ГГц) для внутренних (использование внутри помещения) потребностей организации (Решение Национальной комиссии по регулированию связи Украины № 914 от 2007.09.06) В случае сигнала большей мощности либо предоставления услуг доступа в Интернет, либо к каким-либо ресурсам, необходимо регистрировать передатчик и получить лицензию УДЦР.
(с) Материал из Википедии — свободной энциклопедии
Добавить комментарий
www.broadband.org.ua
Определение термина WiFi, применение WiFi сетей
История создания стандарта беспроводных соединений и его применение.
WiFi — стандарт по беспроводной передаче данных. Передача данных осуществляется по радиоволнам на частотах, находящихся в диапазоне 2.4 — 2.4835 ГГц. Концепция WiFi сетей была придумана и реализована в 1991 г компанией NCR Corporation, технология называлась WaveLan.
WiFi (сокращение от «Wireless Fidelity»), использует спецификации 802.11 семьи стандартов IEEE 802.11. Сам термин WiFi был придуман организацией WiFi Alliance. Данная организация занимается проведением тестов на совместимость оборудования и сертификацией WiFi оборудования. Продукт, который успешно проходит сертификацию альянса, получает отметку «WiFi Certified» (зарегистрированный товарный знак). Изначально данную сертификацию проходили только WiFi продукты стандарта IEEE 802.11b. Сегодня же, сертификацию может пройти любой WiFi продукт семейства IEEE 802.11.
Технология WiFi, получила широкое применение во многих современных предприятиях, муниципальных учреждениях, школах, домах, квартирах, как более универсальная альтернатива проводных локальных сетей. Многие гостиницы, отели, рестораны, фаст-фуды предоставляют доступ к своей WiFi сети. Подобные WiFi сети называются хот-споты (WiFi Hot spot). Доступ к таким сетям может быть как с авторизацией (платные хот-споты), так и без (доступ — бесплатный). Так же довольно часто встречаются беспроводные сети WiFi в коттеджных поселках, т.к. подключение к Интернет за городом стоит довольно дорого и жители поселка могут заказать установку WiFi сети для того, что бы разбить один канал доступа в Интернет на всех, и отслеживать траффик каждого пользователя благодаря биллинговым системам. Помимо сетей в коттеджных поселках, технология WiFi позволяет строить строить беспроводные сети городского масштаба, к которым могут подключиться со своих ноутбуков или мобильных телефонов как частные пользователи (например, на улице или в парке), так и корпоративные клиенты (например, заказать подключение к Интернет для своего офиса). Благодаря технологии WiFi появилась возможность установки бюджетных вариантов беспроводных мостов, установка и настройка которых не требует каких-то специфичных знаний и навыков программирования, т.к. в web интерфейсе точек доступа могут разобраться практически все. Беспроводные мосты WiFi могут работать на расстояниях до 15-20 км при условии прямой видимости.
Без надлежащей защиты, WiFi сеть может быть легкодоступна для нежелательных пользователей, которые используют этот доступ с целью бесплатного подключения к Интернет или с целью поиска и копирования каких-либо данных на компьютерах в этой сети. Таким образом, любому пользователю, собирающемуся установить WiFi сеть, необходимо использовать системы шифрования, такие, как Wired Equivalent Privacy (WEP), или более современные — Wi-Fi Protected Access (WPA), WPA2, WPA2-Enterprise.
wifi4free.ru
Беспроводная передача данных: типы, технология и устройства
Благодаря прогрессу мы получили множество облегчающих нашу жизнь устройств и приборов, которые функционируют за счет изобретения новых технологий. Прорывом в области связи стала не только передача информации по беспроводному каналу, но и синхронизация различного рода устройств при отсутствии проводного соединения.
Что такое беспроводная передача данных?
Ответить на этот вопрос просто: БПД - это перенос информации от одного устройства к другому, которые находятся на определенном расстоянии, без участия проводного подключения.
Технология передачи голосовой информации по радиоканалу стала применяться еще в конце XIX в. С тех пор появилось большое количество радиокоммуникационных систем, которые стали использовать при производстве оборудования для дома, офиса или предприятий.
Существует несколько способов синхронизации устройств для осуществления передачи данных. Каждый из них используется в определенной области и обладает индивидуальными свойствами. Беспроводные сети передачи данных отличаются своими характеристиками, поэтому минимальное и максимальное расстояние между устройствами, в зависимости от вида технологии передачи информации, будет различно.
Для синхронизации устройств по радиоканалу устанавливаются специальные адаптеры, которые способны отправлять и получать информацию. Здесь речь может идти как о небольшом модуле, который встраивается в смартфон, так и об орбитальном спутнике. Приемником и передатчиком могут быть разные виды устройств. Передача осуществляется посредством каналов разных частот и диапазонов. Остановимся подробнее на специфике осуществления разных видов беспроводной синхронизации.
Классификация беспроводных каналов
В зависимости от природы передающей среды различают четыре типа беспроводной передачи данных.
Радиоканалы сотовой связи
Передача данных осуществляется беспроводным путем от передатчика к приемнику. Передатчик формирует радиоимпульс определенной частоты и амплитуды, колебание излучается в пространство. Приемник фильтрует и обрабатывает сигнал, после этого происходит извлечение нужной информации. Радиоволны частично поглощаются атмосферой, поэтому такая связь может искажаться при повышенной влажности или дожде. Мобильная связь работает именно на основе радиоволновых стандартов, каналы беспроводной передачи данных отличаются скоростью передачи информации и диапазоном рабочих частот. К радиочастотной категории передачи данных относится Bluetooth - технология беспроводного обмена данными между устройствами. В России используются следующие протоколы:
- GSM. Это глобальная система осуществления сотовой связи. Частота - 900/1800 мГц, максимальная скорость передачи данных - 270 Кбит/с.
- CDMA. Данный стандарт обеспечивает наилучшее качество связи. Рабочая частота - 450 МГц.
- UMTS. Имеет две рабочие полосы частот: 1885-2012 МГц и 2110-2200 МГц.
Спутниковые каналы
Этот способ передачи информации заключается в использовании спутника, на котором установлена антенна со специальным оборудованием. Сигнал поступает от абонента на ближайшую наземную станцию, затем осуществляется переадресация сигнала на спутник. Оттуда информация отправляется на приемник, другую наземную станцию. Спутниковая связь используется для обеспечения телевидения и радиовещания. Спутниковым телефоном можно воспользоваться в любой отдаленной от станций сотовой связи точке.
Инфракрасные каналы
Связь устанавливается между приемником и передатчиком, которые находятся на близком расстоянии друг от друга. Такой канал для беспроводной передачи данных работает посредством светодиодного излучения. Связь может быть двусторонней или широковещательной.
Лазерные каналы
Принцип действия такой же, как в предыдущем варианте, только вместо светодиодов используется лазерный луч. Объекты должны находиться в непосредственной близости друг от друга.
Беспроводные среды передачи данных различаются своей спецификой. Главными отличительными чертами являются дальность действия и область применения.
Технологии и стандарты беспроводной передачи данных
Информационные технологии в настоящее время развиваются быстрыми темпами. Передавать информацию теперь можно при помощи радиоволн, инфракрасного или лазерного излучения. Такой способ обмена информацией намного удобнее, чем проводной вид синхронизации. Дальность действия при этом, в зависимости от технологии, будет отличаться.
Приведем примеры:
- Персональные сети (WPAN). При помощи этих стандартов подключается периферийное оборудование. Использовать беспроводные компьютерные мыши и клавиатуры намного удобнее по сравнению с проводными аналогами. Скорость беспроводной передачи данных достаточно высокая. Персональные сети позволяют оборудовать системы умных домов, синхронизировать беспроводные аксессуары с гаджетами. Примерами технологий, работающих при помощи персональных сетей, являются Bluetooth и ZigBee.
- Локальные сети (WLAN) базируются на продуктах стандартов 802.11. Термин Wi-Fi в настоящее время известен каждому. Изначально это название было дано продуктам серии стандарта 802.11, а теперь этим термином обозначают продукты любого стандарта из данного семейства. Сети WLAN способны создавать больший рабочий радиус по сравнению с WPAN, повысился и уровень защиты.
- Сети городского масштаба (WMAN). Такие сети работают по тому же принципу, что и Wi-Fi. Отличительной особенностью данной системы беспроводной передачи данных является более широкий обхват территорий, подключиться к данной сети может большее число приемников. WMAN - это тот же Wi Max, технология, которая предоставляет широкополосное подсоединение.
- Глобальные сети (WWAN) - GPRS, EDGE, HSPA, LTE. Сети этого типа могут работать на основе пакетной передачи данных или посредством коммутации каналов.
Отличия в технических характеристиках сетей определяют область их применения. Если рассматривать общие свойства беспроводных сетей, тогда можно выделить следующие категории:
- корпоративные сети - используются для связи объектов внутри одной компании;
- операторские сети - создаются операторами связи для оказания услуг.
Если рассматривать протоколы беспроводной передачи данных, тогда можно выделить следующие категории:
- IEEE 802.11a, b, n, g, y. Данные протоколы принято объединять под общим маркетинговым названием Wi-Fi. Различаются протоколы дальностью действия связи, диапазоном рабочих частот и скоростью передачи данных.
- IEEE 802.15.1. В рамках стандарта осуществляется передача данных по технологии Bluetooth.
- IEEE 802.15.4. Стандарт для беспроводной синхронизации посредством технологии ZigBee.
- IEEE 802.16. Стандарт телекоммуникационной технологии WiMax, которая отличается широкой дальностью действия. WiMax функционально схожа с технологией LTE.
В настоящее время наибольшей популярностью из всех беспроводных протоколов передачи данных пользуются 802.11 и 802.15.1. На базе этих протоколов осуществляется действие технологий Wi-Fi и Bluetooth.
Bluetooth
Точкой доступа, как в случае с Wi-Fi, может выступать любое устройство, оснащенное специальным контроллером, который формирует вокруг себя пикосеть. В данную пикосеть могут входить несколько устройств, при желании они могут быть объединены в мосты для передачи данных.
В некоторых компьютерах и ноутбуках уже встроен контроллер Bluetooth, если данная функция отсутствует, тогда используются USB-адаптеры, которые подсоединяются к аппарату и наделяют его возможностью беспроводной передачи данных.
Bluetooth использует частоту 2,4 ГГц, потребление энергии при этом максимально низкое. Именно этот показатель позволил технологии занять свою нишу в области информационных технологий. Небольшое потребление энергии объясняется слабой мощностью передатчика, небольшой дальностью действия и низкой скоростью передачи данных. Несмотря на это, данных характеристик оказалось достаточно для подключения и функционирования различного рода периферийного оборудования. Технология Bluetooth предоставила нам большое разнообразие беспроводных аксессуаров: наушники, колонки, компьютерные мыши, клавиатуры и многое другое.
Существуют 3 класса приемников Bluetooth:
- 1-й класс. Дальность действия беспроводной синхронизации может достигать 100 м. Устройства такого типа используют, как правило, в промышленных масштабах.
- 2-й класс. Радиус действия составляет 10 м. Устройства этого класса наиболее распространены. Большинство беспроводных аксессуаров относятся именно к этой категории.
- 3-й класс. Дальность действия - 1 метр. Такие приемники ставят в игровые консоли или в некоторые гарнитуры, когда нет смысла отдалять передатчик и приемник друг от друга.
Система беспроводной передачи данных на базе технологии Bluetooth очень удобна для связи устройств. Себестоимость чипов довольно низкая, поэтому оснащение оборудования функцией беспроводного подключения не слишком отражается на повышении цены на него.
Wi-Fi
Наряду с Bluetooth технология Wi-Fi получила такое же повсеместное распространение в области беспроводных коммуникационных технологий. Однако популярность к ней пришла не сразу. Разработки технологии Wi-Fi начались еще в 80-х годах, но окончательный вариант представили только в 1997 году. Компания Apple решила использовать новую опцию на своих ноутбуках. Так появились первые сетевые карты в iBook.
Принцип действия технологии Wi-Fi следующий: в аппарат встраивается чип, который может дать надежную беспроводную синхронизацию с другим таким же чипом. Если устройств больше, чем два, тогда необходимо использовать точку доступа.
Точка доступа Wi-Fi - это беспроводной аналог стационарного роутера. В отличие от последнего, подключение осуществляется без участия проводов, посредством радиоволн. При этом появляется возможность подключить сразу несколько устройств. Не стоит забывать, что при использовании большого количества девайсов скорость передачи данных будет значительно снижена. Для защиты данных сети Wi-Fi точки доступа защищают шифрованием. Без введения пароля к такому источнику данных будет не подключиться.
Первый стандарт технологии Wi-Fi был принят в 1997 году, но повсеместного распространения он так и не получил, так как скорость передачи данных была слишком низкая. Позже появились стандарты 802,11a и 802,11b. Первый давал скорость передачи в 54 Мб/с, но работал на частоте 5 ГГц, которая не везде разрешена. Второй вариант позволял сетям передавать данные на максимальной скорости 11 Мб/с, чего было недостаточно. Тогда появился стандарт 802,11g. Он объединил достоинства предыдущих вариантов, обеспечивая достаточно высокую скорость при рабочей частоте 2,4 ГГц. Стандарт 802,11y является аналогом 802,11g, отличается большим расстоянием действия сетей (до 5 км на открытом пространстве).
LTE
Данный стандарт в настоящее время является наиболее перспективным наряду с другими глобальными сетями. Широкополосный мобильный доступ дает наивысшую скорость беспроводной пакетной передачи данных. В отношении полосы рабочих частот все неоднозначно. Стандарт LTE очень гибкий, сети могут базироваться в частотном диапазоне от 1,4 до 20 МГц.
Дальность действия сетей зависит от высоты расположения базовой станции и может достигать 100 км. Возможность подключения к сетям предоставляется большому количеству гаджетов: смартфонам, планшетам, ноутбукам, игровым консолям и другим устройствам, которые поддерживают данный стандарт. В аппаратах должен быть встроен модуль LTE, который работает совместно с имеющимися стандартами GSM и 3G. В случае обрыва связи LTE девайс переключится на имеющийся доступ к сетям 3G или GSM без обрыва подключения.
В отношении скорости передачи данных можно отметить следующее: по сравнению с сетями 3G она повысилась в несколько раз и достигла отметки 20 МБит/с. Внедрение большого количества гаджетов, оборудованных LTE-модулями, обеспечивает спрос на данную технологию. Устанавливаются новые базовые станции, которые обеспечивают высокоскоростным доступом в интернет даже отдаленные от мегаполисов населенные пункты.
Рассмотрим принцип действия сетей четвертого поколения. Технология беспроводной пакетной передачи данных осуществляется посредством протокола IP. Для быстрой и стабильной синхронизации между базовой станцией и мобильной станцией формируется как частотный, так и временный дуплекс. За счет большого количества комбинаций парных частотных диапазонов возможно широкополосное подключение абонентов.
Распространение сетей LTE снизило тарифы на пользование мобильной связью. Широкий диапазон действия сети позволяет операторам экономить на дорогостоящем оборудовании.
Устройства передачи данных
В своей повседневной жизни мы окружены устройствами, которые функционируют на базе беспроводных технологий передачи данных. Причем каждое устройство имеет несколько модулей активности тех или иных стандартов. Пример: классический смартфон использует сети GSM, 3G, LTE для передачи пакетных и голосовых данных, Wi-Fi для выхода в интернет через точку доступа, Bluetooth для синхронизации девайса с аксессуарами.
Рассмотрим самые популярные устройства беспроводной передачи данных, которые получили повсеместное распространение:
- Wi-Fi-роутер. Данное устройство способно обеспечивать доступом к интернету несколько девайсов. Сам аппарат синхронизирован с источником интернета проводным путем или при помощи сим-карты оператора сотовых сетей.
- Смартфон. Универсальное средство связи, которое дает возможность передавать голосовую информацию, отправлять короткие текстовые сообщения, получать доступ к интернету и синхронизироваться с беспроводными или проводными аксессуарами.
- Планшетный компьютер. Функционально может быть идентичен смартфону. Отличительной особенностью является большой экран, благодаря которому использование гаджета становится более комфортным для определенных видов работ.
- Персональный компьютер. Полноценный стационарный аппарат со встроенной операционной системой, позволяющий работать в сетях интернет, в том числе беспроводных. Беспроводная передача данных на компьютер от точки доступа, как правило, осуществляется через Wi-Fi-адаптер, который подключается через разъем USB.
- Ноутбук. Уменьшенная версия персонального компьютера. В большинстве ноутбуков есть встроенный Bluetooth-адаптер и Wi-Fi-модуль, что позволяет выполнять синхронизацию для получения доступа к интернету, а также подключения беспроводных аксессуаров без дополнительных USB-адаптеров.
- Беспроводные аксессуары и периферийные устройства. К данной категории относятся беспроводные колонки, наушники, гарнитуры, мыши, клавиатуры и другие популярные аксессуары, которые подключаются к девайсам или компьютерам.
- Телевизор или Smart-TV. Телевизор с операционной системой функционально напоминает компьютер, поэтому наличие встроенных беспроводных модулей для него является необходимостью.
- Игровая приставка. Для установки софта у данного гаджета предусмотрен беспроводной выход в интернет. Игровые консоли синхронизированы с устройством по технологии Bluetooth.
- Беспроводное оборудование "Умный дом". Очень сложная и многосторонняя система, управление которой осуществляется беспроводным способом. Все датчики и элементы оборудования оснащены специальными модулями для передачи сигналов.
С усовершенствованием беспроводных технологий на смену старым девайсам постоянно приходят новые аппараты, которые функционально более эффективны и практичны. Оборудование беспроводной передачи данных быстро видоизменяется и модифицируется.
Перспективы использования беспроводных сетей
В настоящее время прослеживается тенденция замены проводных элементов оборудования более новыми беспроводными вариантами. Это намного удобнее не только по причине мобильности аппаратов, но и с точки зрения удобства в использовании.
Производство беспроводного оборудования позволит не только внедрять новейшие системы в мир девайсов для связи, но и оборудовать по последнему слову техники жилье стандартного среднестатистического жителя любого населенного пункта. В настоящее время такое могут позволить себе только люди с высоким уровнем достатка, проживающие в мегаполисах.
В области беспроводных радиокоммуникаций ведутся постоянные исследования, результатом которых являются инновационные технологии, которые отличаются от предшественников своей большей продуктивностью, сниженной энергозатратой и практичностью использования. Результатом таких исследований является появление нового оборудования. Производители всегда заинтересованы в выпуске продукции, которая будет соответствовать инновационным технологиям.
Более продуктивные точки доступа и мощные базовые станции позволят повсеместно использовать новые технологии на крупных предприятиях. Управление оборудованием можно будет вести дистанционно. В области образования беспроводные технологии способны облегчить процесс обучения и контроля. В некоторых школах уже начинают внедрять процесс мобильного образования. Заключается он в удаленном обучении посредством видеосвязи через интернет. Перечисленные примеры являются лишь начальным шагом перехода развития общества на новую ступень, которая будет построена на базе беспроводных технологий.
Преимущества беспроводной синхронизации
Если сравнивать проводную и беспроводную передачу данных, можно выявить множество преимуществ последней:
- не мешают провода;
- высокая скорость передачи данных;
- практичность и быстрота подключения;
- мобильность использования оборудования;
- исключен износ или обрыв связи;
- есть возможность использования нескольких вариантов беспроводного подключения в одном девайсе;
- возможность подключения сразу нескольких устройств к точке доступа интернета.
Наряду с этим есть и некоторые недостатки:
- излучение большого количества аппаратов может отрицательно сказаться на здоровье человека;
- при близком расположении различного беспроводного оборудования есть вероятность возникновения помех и сбоев в связи.
Причины массовой распространенности беспроводных сетей очевидны. В необходимости всегда оставаться на связи нуждается любой среднестатистический член современного общества.
В заключение
Беспроводные технологии предоставили возможность повсеместного внедрения телекоммуникационного оборудования, которое массово используется во всех странах мира. Постоянные доработки и новые открытия в области беспроводных коммуникаций дают нам все больший уровень комфорта, а обустройство быта при помощи инновационных приборов становится все более доступным для большинства людей.
fb.ru