AC стандарт Wi-Fi. Почему AC роутер лучше N роутера. Wi fi n что это


Режим 802.11n прямого соединения Wi-Fi что это?

802.11n — режим передачи данных, реальная скорость примерно в четыре раза выше чем у 802.11g (54 Мбит/с). Но это имеется ввиду если устройство которое отправляет и которое принимает — работают в режиме 802.11n.

Устройства 802.11n работают в диапазоне частот 2.4 — 2.5 или 5 ГГц. Обычно частота указывается в документации к устройству, либо на упаковке. Радиус действия — 100 метров (может отражаться на скорости).

IEEE 802.11n — быстрый режим работы вай-фай, быстрее только 802.11ас (это вообще нереально крутой стандарт). Совместимость 802.11n с более старыми 802.11a/b/g возможна при использовании одной и той же частоты и канала.

Вы можете думать что я странный, но вот я не люблю Wi-Fi — не знаю почему, но мне как-то постоянно кажется что это не так стабильно как провода (витая пара). Может потому что у меня были только USB-адаптеры. В будущем хочу взять себе Wi-Fi PCI-карту, надеюсь что там все стабильно уж)) Я уже молчу о том, что Wi-Fi USB без антенны и скорость из-за всяких стен будет снижаться.. Но сейчас у нас в квартире провода валяются, и я согласен — не очень то и удобно..))

Как я понимаю — 802.11n это неплохой стандарт, так как он включает уже в себя характеристики 802.11a/b/g.

Однако выясняется вот что — 802.11n не совместим с предыдущими стандартами. И как я понимаю, это основная причина, из-за чего до сих пор 802.11n не особо популярный стандарт, а ведь появился он в 2007 году. Вроде бы все таки совместимость есть — об этом написал ниже.

Некоторые характеристики других стандартов:

Стандартов есть много и некоторые из них очень интересны своим предназначением:

Смотрите, вот 802.11p — определяет тип устройств, которые в радиусе километра едут со скоростью не более 200 км.. представляете?)) Вот это технологии!!

802.11n и скорость роутера

Смотрите, может быть такая ситуация — вам нужно увеличить скорость в роутере. Что делать? Ваш роутер спокойно может поддерживать стандарт IEEE 802.11n. Нужно открыть настройки, и где-то там найти опцию применения этого стандарта, то есть чтобы устройство работало в этом режиме. Если у вас роутер ASUS, то настройка может иметь примерно такой вид:

По сути — главное это буква N. Если у вас фирма TP-Link, то настройка может иметь такой вид:

Это все для роутера. Я понимаю что информации мало — но хотя бы теперь вы знаете, что в роутере есть такая настройка, а вот как подключиться к роутеру.. лучше посмотреть в интернете, я признаюсь — в этом не силен. Знаю только что нужно открыть адрес.. что-то вроде 192.168.1.1, как-то так..

Если у вас ноутбук, он тоже может поддерживать стандарт IEEE 802.11n. И его полезно установить, если вы например создаете точку доступа из ноутбука (да, это возможно). Откройте диспетчер устройств, для этого зажмите кнопки Win + R и вставьте эту команду:

devmgmt.msc

Потом найдите ваш Wi-Fi адаптер (может называться сетевой адаптер Broadcom 802.11n) — нажмите правой кнопкой и выберите Свойства:

Перейдите на вкладку Дополнительно и найдите пункт Режим 802.11n прямого соединения, выберите включить:

Настройка может называться иначе — Wireless Mode, Wireless Type, Wi-Fi Mode, Wi-Fi type. В общем нужно указать режим передачи данных. Но эффект в плане скорости, как я уже писал, будет при условии если оба устройства используют стандарт 802.11n.

Нашел вот такую важную информацию по поводу совместимости:

Про совместимость, а также много важной информации о стандартах 802.11 читайте здесь:

https://safezone.cc/threads/sovmestimost-so-starymi-standartami-802-11.20540/

Там реально очень много ценной информации, советую все таки посмотреть.

AdHoc Support 802.11n что это? Нужно включать или нет?

AdHoc Support 802.11n или AdHoc 11n- поддержка работы временной сети AdHoc, когда соединение возможно между разными устройствами. Используется для оперативной передачи данных. Не нашел информации о том, возможно ли организовать раздачу интернета в сети AdHoc (но все может быть).

Официально AdHoc ограничивает скорость до уровня стандарта 11g — 54 Мбит/с.

Интересный момент узнал — скорость Wi-Fi 802.11g, как я уже написал — 54 Мбит/с. Однако оказывается что 54, это суммарная цифра, то есть это прием и отправка. Так то, в одну сторону скорость — 27 Мбит/с. Но это еще не все — 27 Мбит/с это канальная скорость, которая возможна при идеальных условиях, их достичь нереально — 30-40% канала все равно составляют помехи в виде мобильных телефонов, всяких излучений, смарт-телеки с вай фаем и прочее. В итоге скорость на деле может быть реально 18-20 Мбит/с, а то и меньше. Я не буду утверждать — но возможно что это касается и других стандартов.

Так нужно включать или нет? Получается что без надобности — не нужно. Также, если я правильно понимаю, то при включении будет создана новая локальная сеть и возможно все таки можно в ней организовать интернет. Иными словами, может быть.. что при помощи AdHoc можно создать точку доступа Wi-Fi. Только что посмотрел в интернете — вроде бы таки можно))

Просто я помню вот что.. как-то я купил себе Wi-Fi адаптер фирмы D-Link (кажется это была модель D-Link N150 DWA-123) и там не было поддержки создания точки доступа. Но вот чип, он был то ли китайский.. толи еще какой-то.. в общем я узнал, что на него можно установить специальные неофициальные драйвера, полу-кривые, и при помощи них можно создать точку доступа.. И вот эта точка доступа работала вроде бы при помощи AdHoc, к сожалению точно не помню — но работала более-менее сносно.

Настройки Ad Hoc в свойствах сетевой карты

На заметку — QoS это технология распределения трафика в плане приоритетов. Обеспечивает необходимый высокий уровень передачи пакетов для важных процессов/программ. Если простыми словами, то QoS позволяет задать высокий приоритет программам, где нужна мгновенная передача данных — онлайн игры, VoIP-телефония, стрим, потоковое вещание и подобное, наверно к Скайпу и Вайберу тоже относится.

802.11 Preamble Long and Short — что это за настройка?

Да уж, эти настройки — целая наука. Часть кадра, которая передается модулем 802.11, называется преамбулой. Может быть длинная (Long) и короткая (Short) преамбула и видимо это указывается в настройке 802.11 Preamble (или Preamble Type). Длинная преамбула использует 128-битное поле синхронизации, короткая — 56-битное.

Устройства 802.11, работающие на частоте 2.4 ГГц обязаны при приеме и передаче поддерживать длинные преамбулы. Устройства 802.11g должны уметь работать с длинными и короткими преамбулами. В устройствах 802.11b работа коротких преамбул опциональна.

Значения в настройке 802.11 Preamble могут быть Long, Short, Mixed mode (смешанный режим), Green field (режим зеленого поля), Legacy mode (унаследованный режим). Скажу сразу — лучше не трогать эти настройки без необходимости и оставить значение по умолчанию либо при наличии выбрать Auto (или Default).

Что означают режимы Long и Short — мы уже выше выяснили. Теперь коротко о других режимах:

  1. Legacy mode. Режим обмена данными между станциями с одной антенной.
  2. Mixed mode. Режим передачи данных между системами MIMO (быстро, но медленнее чем Green field), так и между обычными станциями (медленно, так как не поддерживают высокие скорости). Система MIMO определяет пакет в зависимости от приемника.
  3. Green field. Передача возможна между многоантенными устройствами. Когда происходит передача MIMO-системой, обычные станции ожидают освобождения канала, чтобы исключить конфликты. В этом режиме прием данных от устройств, работающих в вышеуказанных двух режимах — возможен, а вот передача им — нет. Это сделано чтобы в процессе передачи данных исключить одноантенные устройства, тем самым сохранив высокую скорость передачи.

Поддержка MIMO что это такое?

На заметку. MIMO (Multiple Input Multiple Output) — тип передачи данных, при котором методом пространственного кодирования сигнала увеличивается канал и передача данных осуществляется несколькими антеннами одновременно.

Теперь вы будете знать зачем к Wi-Fi-адаптеру формата PCI-E можно подключить несколько антенн)) Вот узнал — есть и USB-адаптеры на несколько антенн)) Кроме скорости есть еще один весомый плюс — надежное и стабильное соединение даже на приличном расстоянии.

Но разумеется все это при условии что отправка и прием данных происходит между устройствами MIMO. Если честно, мне интересны такие Wi-FI адаптеры, наверно они дороже в цене, но это переплата за стабильность и надежность.

Адаптеры с поддержкой MIMO

На этом все ребята. Надеюсь что эта информация вам пригодилась)) Удачи и до новых встреч!

На главную! 802.11n 20.10.2018

virtmachine.ru

AC стандарт Wi-Fi. Почему AC роутер лучше N роутера

     При покупке 5ГГц роутера слово DualBand (Двухдиапазонный) отвлекает наше внимание от более важной сути, стандарта Wi-Fi, использующего несущую 5ГГц. В отличие от стандартов использующих несущую 2.4ГГц, уже давно знакомых и понятных, 5ГГц устройства могут использоваться в комплексе с 802.11n или 802.11ac стандартами ( в дальнейшем AC стандарт и N стандарт).

     Группа стандартов Wi-Fi IEEE 802.11 эволюционировала довольно динамично, от  IEEE 802.11a, который обеспечивал скорости до 2 Мбит/с, через 802.11b и 802.11g, которые давали скорости до 11 Мбит/с и 54 Мбит/с соответственно. Затем появился стандарт 802.11n или просто n-стандарт. N-стандарт был настоящим прорывом, так как теперь через одну антенну можно было передавать трафик на немыслимой по тем временам скорости 150Мбит. Это достигалось за счёт использования передовых технологий кодирования (MIMO), более тщательного учёта особенностей распространения ВЧ волн, технологии удвоенной ширины канала, не статичный защитный интервал определяемый таким понятием как индекс модуляции и схемы кодирования.

Принципы функционирования 802.11n

     Уже привычный 802.11n может применяться в одном из двух диапазонов 2.4ГГц и 5.0 ГГц.  На физическом уровне кроме усовершенствованной обработка сигнала и модуляции, добавлена возможность одновременной передачи сигнала через четыре антенны, через каждую антенну можно пропустить до 150Мбит/с, т.е. это теоретически 600Мбит. Однако, учитывая, что одновременно антенна работает либо на приём либо на вещание, то скорость передачи данных в одну сторону не превысит 75Мбит/с на антенну.
Многоканальный вход/выход (MIMO)
     Впервые поддержка этой технологии появилась в стандарте 802.11n. MIMO расшифровывается как Multiple Input Multiple Output, что в переводе - многоканальный вход многоканальный выход.

     С помощью технологии MIMO реализована способность одновременного приема и передачи нескольких потоков данных через несколько антенн, а не одну.

     Стандарт 802.11n определяет различные  конфигурации антенн от "1х1" до "4х4". Также возможны несиметричные конфигурации, например, "2х3", где первое значение означает количество передающих, а второе количество принимающих антенн.

    Очевидно, максимальную скорость приёма передачи возможно достичь только при использовании схемы "4х4". На самом деле количество антенн не увеличивает скорость само по себе, однако это позволяет применять различные усовершенствованные методы обработки сигналов, которые автоматически выбираются и применяются устройством, в том числе и исходя из конфигурации антенн. Например, схема "4х4" с модуляцией 64-QAM обеспечивает скорость до 600 Мбит/с, схема "3х3" и 64-QAM обеспечивает скорость до 450 Мбит/с, а схемы "1х2" и "2х3" до 300 Мбит/с.
Ширина полосы пропускания канала 40 МГц
    Особенностью стандарта 802.11n является удвоенная ширина 20МГц канала, т.е. 40 МГц. Возможность поддержки 802.11n устройствами работающих на несущих 2.4ГГц и 5ГГц. В то время как стандарт 802.11b/g работает только на 2.4 ГГц, а 802.11a работает на частоте 5 ГГц. В полосе частот 2.4 ГГц для беспроводных сетей доступны всего 14 каналов, из них первые 13 разрешены в СНГ, с интервалами 5 МГц между ними. Устройства использующие стандарт 802.11b/g используют каналы шириной 20 МГц. Из 13 каналов 5 пересекающихся. Для исключения взаимных помех между каналами необходимо, чтобы их полосы отстояли друг от друга на 25 МГц. Т.е. не пересекающимися будут только три канала на полосе 20 МГц: 1, 6 и 11.
Распределение Wi-Fi каналов по часттотам
Режимы работы 802.11n
     Стандарт 802.11n предусматривает работу в трёх режимах: High Throughput (читый 802.11n), Non-High Throughput (полная совместимость с 802.11b/g) и High Throughput Mixed (смешанный режим).

High Throughput(НТ) - режим с высокой пропускной способностью.

     Точки доступа 802.11n используют режим High Throughput. Данный режим абсолютно исключает совместимость с предыдущими стандартами. Т.е. усройства не поддерживающие n-стандарт подключиться не смогут. Non-High Throughput(Non-HT) - режим с невысокой пропускной способностью Чтобы устаревшие устройства могли подключиться, все кадры отправляются в формате 802.11b/g. В этом режиме  используется ширина канала 20 МГц для обеспечения обратной совместимости. При использовании этого режима данные  передаются со скоростью, поддерживаемой самым медленным устройством, подключённым к данной точке доступа (или Wi-Fi роутеру).

   High Throughput Mixed - смешанный режим с высокой пропускной способностью. Смешанный режим позволяет устройству работаь одновременно по стандарту 802.11n и 802.11b/g. Обеспечит обратную совместимость устаревших устройств, и устройств использующих стандарт 802.11n. Однако, пока старое устройство осуществляет прием-передачу данных, устаройство поддерживающее 802.11n ждёт своей очереди, и это сказывается на скорости. Также очевидно, что , чем больше трафика будет идти по стандарту 802.11b/g, тем меньшую производительность сможет показать 802.11n устройство в режиме High Throughput Mixed.
Индекс модуляции и схемы кодирования (MCS)
    Стандарт 802.11n определяет понятие "Индекс модуляции и схемы кодирования"(Modulation and Coding Scheme). MCS - это простое целое число, присваиваемое варианту модуляции (всего возможно 77 вариантов). Каждый вариант определяет тип модуляции радиочастоты (Type), скорость кодирования (Coding Rate), защитный интервал (Short Guard Interval) и значения скорости передачи данных. Сочетание всех этих факторов определяет реальную физическую (PHY) скорость передачи данных, начиная от 6,5 Мбит/с до 600 Мбит/с (данная скорость может быть достигнута за счет использования всех возможных опций стандарта 802.11n).

Некоторые значения индекса MCS определенны и показаны в следующей таблице:

Расшифруем значения некоторых параметров.

    Короткий защитный интервал SGI (Short Guard Interval) определяет интервал времени между передаваемыми символами. В устройствах стандарта 802.11b/g используется защитный интервал 800 нс, а в устройствах 802.11n есть возможность использования паузы всего в 400 нс. Короткий защитный интервал (SGI) повышает скорость передачи данных на 11 процентов. Чем короче этот интервал тем большее количество информации можно передать в единицу времени, однако, при этом точность определения символов падает, поэтому разработчиками стандарта подобрано оптимальное значение этого интервала.

MCS значения от 0 до 31 определяют тип модуляции и схемы кодирования, которые будут использоваться для всех потоков. MCS значения с 32 по 77 описывают смешанные комбинации, которые могут быть использованы для модуляций от двух до четырех потоков.

    Точки доступа 802.11n должны поддерживать MCS значения от 0 до 15, в то время как 802.11n станции должны поддерживать MCS значения от 0 до 7. Все другие значения MCS, в том числе связанные с каналами шириной 40 МГц, коротким защитным интервалом (SGI), являются опциональными, и могут не поддерживаться.

Особенности AC стандарта

     В реальных условиях ни одному стандарту не удалось добиться максимума своей теоретической производительности, поскольку на сигнал влияет множество факторов: электромагнитные помехи от бытовой техники и электроники, препятствия на пути сигнала, отражения сигнала, и даже магнитные бури. Из-за этого производители и продолжают работать над созданием еще более эффективных вариантов стандарта Wi-Fi, более приспособленного не только для домашнего, но и активного офисного использования, а также построения расширенных сетей. Благодаря этому стремлению, совсем недавно, родилась новая версия IEEE 802.11 — 802.11ac ( или просто AC стандарт).

     Принципиальных отличий от N в новом стандарте не слишком много, но все они направлены на увеличение пропускной способности беспроводного протокола. В основном разработчики пошли путём улучшения преимуществ стандарта N. Самое заметное — расширение каналов MIMO с максимальных трех до восьми. Это значит, что вскоре мы сможем увидеть в магазинах беспроводные маршрутизаторы с восемью антеннами. А восемь антенн — это теоретическое удвоение пропускной способности канала до 800 Мбит/с, это не говоря о возможных шестнадцатиантенных устройствах.

     Устройства стандартов 802.11abg работали на каналах шириной пропускания 20 МГц, а чистый N предполагает каналы шириной 40 МГц. В новом стандарте предусмотренно, что AC  роутеры имеют каналы на 80 и 160 МГц, а это означает удвоение и учетверение канала удвоенной ширины.

    Стоит отметить предусмотренную в стандарте улучшенную реализацию технологии MIMO — технологию MU-MIMO. Старые версии протоколов, совместимые со стандартом N, поддерживали полудуплексную передачу пакетов от устройства к устройству. То есть в момент, передачи пакета одним устройством, другие устройства могут работать только на прием. Соответственно, если одно из устройств подключается к роутеру, используя старый стандарт, тогда и другие будут работать медленнее из-за увеличившегося времени передачи пакетов устройству использующему старый стандарт. Это может быть причиной понижения качества характеристик беспроводной сети в случае, если к ней подключено много таких устройств. Технология MU-MIMO решает эту проблему, создавая многопоточный канал передачи, при использовании которого остальные устройства не ждут своей очереди. В то же время AC роутер должен быть обратносовместим с предыдущими стандартами.

     Однако, конечно же есть и ложка дёгтя. В настоящее время по прежнему абсолютное большинство ноутбуков, планшетов, смартфонов не поддерживают не только AC стандарт Wi-Fi, а даже не умеют работать на несущей 5ГГц. Т.е. и 802.11n на 5ГГц им недоступна. Также сами AC роутеры и точки доступа  могут в несколько раз превышать по стоимости роутеры ориентированные на использование стандарта 802.11n.

techsuphelper.blogspot.com

Wi-Fi 802.11n: теория и практика | Мир ПК

Действительно, несмотря на то что беспроводные сети Wi-Fi получили повсеместное признание и распространение, до настоящего момента за ними числятся три основных недостатка: низкая (по сравнению с проводным Ethernet) реальная скорость передачи данных, сложности с равномерным покрытием (и наличием так называемых мертвых зон — dead spots) и проблемы безопасности данных и несанкционированного доступа. Теперь давайте посмотрим на основные достоинства устройств, созданных по спецификации 802.11n. Это заметно более высокая скорость передачи данных, улучшенная безопасность благодаря введению нового алгоритма шифрования WPA2, а также значительное расширение зоны покрытия и большая помехоустойчивость. Но, разумеется, мы уже давно привыкли к тому, что рекламно-маркетинговые цифры, обещающие многократное улучшение самых разных показателей, конечно же имеют что-то общее с реальными характеристиками, но далеко не всегда совпадают с ними даже по порядку величины. А для того, чтобы правильно оценить новые возможности и их ограничения, всегда имеет смысл представлять, за счет чего, собственно, эти новые возможности достигаются.

Немного теории. Теоретическая скорость соединения для устройств 802.11n cоставляет 300 Мбит/c, а для устройств предыдущего и наиболее сейчас распространенного 802.11g — 54 Мбит/c. Обе цифры соответствуют идеальным, но не существующим в природе условиям. Но все-таки за счет чего может достигаться увеличение скорости больше чем в 5 раз? Если задать этот вопрос любознательному ребенку, который, к своему счастью, еще не обязан демонстрировать глубокие познания в радиофизике, то он определенно выскажется в том духе, что у новых устройств торчит больше антенн, значит, поэтому они и работают быстрее. И в общем-то, примерно так оно и есть, увеличение скорости и зоны устойчивого покрытия достигается во многом благодаря технологии многолучевого распространения (MIMO — Multiple Input Multiple Output), при которой данные разделяются между несколькими передатчиками, работающими на одной и той же частоте.

Не отказались разработчики и еще от одного простого и понятного способа увеличения скорости — использования двух частотных каналов вместо одного. Если в 802.11g задействуется один частотный канал шириной 20 МГц, то в 802.11n применяется технология, связывающая два расположенных рядом друг с другом канала в один шириной 40 МГц (сведения об использовании двух каналов вместо одного нам очень пригодятся на практике при настройке устройств на максимальную производительность).

Одна из причин, по которой реально наблюдаемая скорость в сетевых приложениях всегда меньше заявленной производителем, состоит в том, что кроме собственно передаваемых данных устройства обмениваются также служебной информацией через все тот же канал связи. Таким образом, скорость сетевого соединения на уровне приложений всегда меньше, чем на физическом уровне. Ну а на коробке по понятным причинам принято указывать большее по абсолютной величине значение без каких-либо дополнительных уточнений. Соответственно еще одна возможность для увеличения реальной скорости передачи данных — это оптимизация «накладных расходов», т. е. объема пересылаемых служебных данных, в первую очередь за счет объединения на физическом уровне нескольких кадров данных в один.

Разумеется, это только некоторые из основных нововведений в стандарте 802.11n. Но, строго говоря, полной и окончательной спецификации устройств 802.11n не существует до сегодняшнего дня. И в этом еще одна, значительно менее радостная причина пристального внимания к новому стандарту и большого числа разговоров о нем. Принятие его окончательной спецификации IEEE 802.11n откладывается уже несколько лет и в настоящий момент запланировано на вторую половину 2008 г., но нет никаких гарантий того, что утверждение документа не будет в очередной раз отложено. В то же время многие производители попытались в числе первых представить на рынок устройства на основе предварительных версий стандарта, что в какой-то момент привело к появлению сырых и плохо совместимых между собой устройств, которые, кроме того, зачастую проигрывали в скорости по сравнению с нестандартизованными решениями других производителей (см. «Draft-N:не спешите со скоростью», «Мир ПК», №10/06). С тех пор была утверждена предварительная версия стандарта 802.11n Draft 2.0, за сертификацию, не дожидаясь официального утверждения IEEE 802.11n, взялась организация Wi-Fi Alliance, а у разработчиков было достаточно времени для того, чтобы устранить недочеты, характерные для первых моделей устройств. Список устройств, прошедших сертификацию, доступен на сайте www.wifialliance.org , и именно на этот список мы ориентировались, планируя тестирование первых устройств стандарта 802.11n Draft 2.0.

Практика. Как обычно, из восьми сертифицированных устройств, производители которых представлены в России, реально оказались доступными только три комплекта оборудования, состоящих из точки доступа и соответствующего адаптера, — DIR-655 и DWA-645 от D-Link, WNR854T и WN511T от Netgear, а также BR-6504n и EW-7718Un компании Edimax. Очень кстати каждый из рассматриваемых маршрутизаторов оказался оснащен четырьмя портами Gigabit Ethernet, и проводное соединение, таким образом, заведомо никак не ограничивало измеряемую нами скорость соединения (подробности измерений см. во врезке «Как мы тестировали»). Вряд ли стоит подробно останавливаться на внешнем виде и комплектации каждого из устройств (вся подобная информация представлена на соответствующих веб-сайтах производителей). Разумеется, внешний облик — далеко не главное качество маршрутизатора, но и не такое уж незначительное, ведь для наилучшего распространения сигнала логично располагать это устрой-ство на высоком и видном месте. Наибольшее внимание здесь наверняка привлечет модель Netgear — у нее отсутствуют внешние антенны. Из наблюдений во время настройки маршрутизаторов стоит, пожалуй, упомянуть довольно полезную функцию автоматического выбора наиболее свободного частотного канала, реализованную в D-Link DIR-655. Заметим, что перед установкой может иметь смысл загрузить с сайта производителя последнюю версию драйверов — так, например, первоначально адаптер Netgear принципиально не хотел устанавливать соединения по стандарту 802.11n с маршрутизаторами других производителей, но обновление драйверов полностью решило эту проблему. Упомянем и о том, что указанные маршрутизаторы могут занимать один или два канала. При этом устройство D-Link по умолчанию настроено на работу с каналом шириной 20 МГц, а модели Netgear и Edimax — со сдвоенным. Для измерения максимальной производительности мы, разумеется, использовали режим с полосой 40 МГц, но в таком случае возможно ухудшение работы других беспроводных сетей, находящихся в непосредственной близости. Кстати, прежде чем обсуждать производительность, напомним, что до появления сетей Wi-Fi диапазон 2,4 ГГц относился к так называемым мусорным диапазонам (garbage bands) из-за большого числа помех самого разного характера, а с тех пор ситуация если и изменилась, то не в лучшую сторону. И до определенной степени именно этим можно объяснить существенные различия в скорости передачи данных от одного измерения к другому. Разумеется, чтобы уменьшить случайную ошибку измерений, мы сделали их довольно много и провели соответствующую статистическую обработку результатов. Но в любом случае можем с уверенностью утверждать, что встречающиеся время от времени рассуждения о том, что одно устройство лучше другого, потому что скорость копирования файлов у него оказалась на несколько мегабит в секунду выше, просто лишены всякого смысла без многократных измерений и необходимой обработки результатов.

Средние скорости передачи данных по протоколу TCP/IP представлены на диаграмме 1, изучив которую можно сделать следующий вывод: в среднем скорость соединения по 802.11n составляет порядка 50 Мбит/c, что примерно в 2,5 раза больше, чем скорость соединения по 802.11g. Кроме того, хотя, как и следовало ожидать, использование точки доступа и адаптера одного и того же производителя приводит к наилучшим скоростным показателям, устройства всех трех производителей демонстрируют довольно неплохую совместимость друг с другом.

Во второй серии испытаний мы измеряли скорость работы беспроводной сети вблизи сильнодействующего источника помех, в качестве которого использовалась работающая СВЧ-печь. Полученные результаты говорят сами за себя: если для стандартного 802.11g-соединения скорость падает на порядок и составляет около 2 Мбит/c, то устройства, соответствующие 802.11n, демонстрируют устойчивую работу со средней скоростью более 10 Мбит/c, т. е., как минимум в 5 раз быстрее.

Соответственно, основываясь на серии проведенных измерений, приходим к заключению: устройства 802.11n обеспечивают реальную скорость соединения по протоколу TCP/IP около 50 Мбит/c, демонстрируют существенно лучшую работу беспроводной сети в случае сильнодействующих помех, а кроме того, устройства разных производителей (во всяком случае, как минимум трех — D-Link, Netgear и Edimax) уже довольно хорошо взаимодействуют друг с другом.

Как мы тестировали

К исследуемой точке доступа по проводному Ethernet подключался компьютер на базе процессора Intel Extreme Edition 955 c 1-Гбайт ОЗУ и жестким диском WD4000КВ, работающий под управлением Windows XP SP2. С помощью беспроводного соединения к точке доступа подключался ноутбук Acer TravelMate 3300, работающий под управлением Windows XP SP2, оснащенный процессором Intel Pentium M 1,7 ГГц, ОЗУ объемом 512 Мбайт и жестким диском Hitachi TravelStar 4K120. Скорость соединения измерялась с помощью пакетa Netperf (www.netperf.org ). Для оценки производительности беспроводной сети измерялась скорость передачи нисходящего потока данных (downlink) TCP/IP от стационарного компьютера к ноутбуку. Скорость нисходящего соединения при подключении компьютеров по сети Ethernet 1 Гбит/c составила порядка 350 Мбит/c. При настройке точки доступа выбирался частотный канал, наиболее удаленный от других источников сигнала и соответственно обеспечивающий максимальную пропускную способность. Для исключения возможного влияния расположения точки доступа и других случайных факторов каждое измерение проводилось 20 раз.

27590

www.osp.ru

Что такое b/g/n в настройках роутера? Изменяем режим работы беспроводной сети (Mode) в настройках Wi-Fi роутера

Здравствуйте читатели блога компании КомСервис (г. Набережные Челны)! Будем сегодня снова говорить о маршрутизаторах, беспроводной сети, технологиях…

Решил подготовить статью, в которой рассказать о том, что же это за такие непонятные буквы b/g/n, которые можно встретить при настройке Wi-Fi роутера, или при покупке устройства (характеристики Wi-Fi, например 802.11 b/g). И в чем отличие между этими стандартами.

Сейчас постараемся разобраться что это за настройки и как их сменить в настройках маршрутизатора и собственно для чего изменять режим работы беспроводной сети.

Значит b/g/n – это режим работы беспроводной сети (Mode).

Есть три (основных) режима работы Wi-Fi 802.11. Это b/g/n. Чем они отличаются? Отличаются они максимальной скорость передачи данных (слышал, что еще есть разница в зоне покрытия беспроводной сети, но не знаю насколько это правда).

Давайте подробнее:

B — это самый медленный режим. До 11 Мбит/с.

G — максимальная скорость передачи данных 54 Мбит/с

N — новый и скоростной режим. До 600 Мбит/c

Так, значит с режимами разобрались. Но нам еще нужно выяснить, зачем их изменять и как это сделать.

Для чего изменять режим работы беспроводной сети?

Здесь все очень просто, давайте на примере. Вот есть у нас iPhone 3GS, он может работать в интернете по Wi-Fi только в режимах b/g (если характеристики не врут). То есть, в новом, скоростном режиме N он работать не может, он его просто не поддерживает.

И если у Вас на роутере, в качестве режима работы беспроводной сети будет стоять N, без всяких там mixed, то подключить этот телефон к Wi-Fi у Вас не получиться, здесь хоть головой об стену бей :).

Но это не обязательно должен быть телефон и тем более iPhone. Такая несовместимость с новым стандартом может наблюдаться и на ноутбуках, планшетах, Wi-Fi приемниках и т. д.

Уже несколько раз замечал, что при самых разных проблемах с подключением телефонов, или планшетов к Wi-Fi — помогает смена режима работы Wi-Fi.

Если Вы хотите посмотреть, какие режимы поддерживает Ваше устройство, то посмотрите в характеристиках к нему. Обычно поддерживаемые режимы указаны рядом с отметкой «Wi-Fi 802.11″.

На упаковке (или в интернете), так же можно посмотреть в каких режимах может работать Ваш маршрутизатор.

Вот для примера поддерживаемые стандарты которые указаны на коробке адаптера TP-LINK TL-WN721N:

Как сменить режим работы b/g/n в настройках Wi-Fi роутера?

Я покажу как это сделать на примере двух роутеров, от ASUS и TP-Link. Но если у Вас другой маршрутизатор, то смену настроек режима беспроводной сети (Mode) ищите на вкладке настройки Wi-Fi, там где задаете имя для сети и т. д.

На роутере TP-Link

Заходим в настройки роутера. Как в них зайти? Я уже устал писать об этом практически в каждой статье :). Посмотрите лучше эту запись comservice-chelny.ru/sovety/ne-zaxodit-v-nastrojki-routera/.

После того, как попали в настройки, слева перейдите на вкладку Wireless — Wireless Settings.

И напротив пункта Mode Вы можете выбрать стандарт работы беспроводной сети. Там есть много вариантов. Я советую устанавливать 11bgn mixed. Этот пункт позволяет подключать устройства, которые работают хотя бы в одном из трех режимов.

Но если у Вас все же возникают проблемы с подключением определенных устройств, то попробуйте режим 11bg mixed, или 11g only. А для достижения хорошей скорости передачи данных можете установить 11n only. Только смотрите, что бы все устройства поддерживали стандарт N.

На забудьте после внесения изменений сохранить настройки нажав на кнопку Save. И перезагрузите роутер.

На примере роутера ASUS

Здесь все так же. Заходим в настройки и переходим на вкладку «Беспроводная сеть».

Напротив пункта «Режим беспроводной сети» можно выбрать один из стандартов. Или же установить Mixed, или Auto (что я и советую сделать). Подробнее по стандартам смотрите чуть выше. Кстати, в ASUS справа выводиться справка, в которой можно прочитать полезную и интересную информацию по этим настройкам.

Для сохранения нажмите кнопку «Применить».

На этом все,. Ваши вопросы, советы и пожелания жду в комментариях. Всем пока!

Источник: f1comp. ru

comservice-chelny.ru

802.11n-MIMO

Кратко о MIMO.

Технология на базе стандарта WiFi IEEE 802.11n.

Wi-Life представляет краткий обзор по технологии WiFi IEEE 802.11n.Расширенная информация к нашей видеопубликации.

Первое поколение устройств с поддержкой стандарта WiFi 802.11n появилось на рынке несколько лет назад. Технология MIMO (MIMO-multipleinput/multipleoutput-множественные входы/множественные выходы) является стержнем 802.11n. Это радиосистема с множеством раздельных путей передачи и приема. MIMO-системы описываются с использованием количества передатчиков и приемников. Стандарт WiFi 802.11n определяет набор возможных комбинаций от 1х1 до 4х4.

 

 

В типичном случае развертывания сети стандарта Wi-Fi внутри помещения, например в офисе, цеху, ангаре, больнице радиосигнал редко идет по кратчайшему пути между передатчиком и приемником из-за стен, дверей и других препятствий. Большинство подобных окружений имеют много различных поверхностей, которые отражают радиосигнал (электромагнитную волну) подобно зеркалу, отражающему свет. После переотражения образуются множественные копии исходного сигнала WiFi. Когда множественные копии WiFi-сигнала перемещаются различными путями от передатчика к приемнику сигнал шедший кратчайшим путем будет первым, а следующие копии (или переотраженное эхо сигнала) придут чуть позже из-за более длинных путей. Это называют многолучевым распространением сигнала (multipath). Условия множественного распространения постоянно меняются, т.к. Wi-Fi-устройства часто перемещаются (смартфон с Wi-Fi в руках пользователя), движутся вокруг различные объекты создавая помехи (люди, машины и т.п.).  В случае прибытия сигналов в разное время и под разными углами это может вызывать искажения и возможное затухание сигнала.

Важно помнить, что  поддержка WiFi 802.11n c MIMO и большим количеством приемников может снизить эффект многолучевого распространения и деструктивную интерференцию, но в любом случае лучше уменьшать условия многолучевого распространения где и как только возможно. Один из важнейших моментов – держите антенны как можно дальше от металлических предметов (прежде всего омни антенны WiFi, которые имеют круговую или всенаправленную диаграмму направленности).

Необходимо четко понимать, что далеко не все Wi-Fi клиенты и Точки Доступа стандарта WiFi одинаковы с точки зрения MIMO.Существуют клиенты 1х1, 2х1, 3х3 и т.д. Например мобильные устройства типа сматрфона чаще всего поддерживают MIMO 1x1, иногда 1x2. Это связано с двумя ключевыми проблемами:1. необходимость обеспечения низкого потребления энергии и долгой жизни аккумулятора,2. сложность в расположении нескольких антенн с адекватным их разнесением в небольшом корпусе.Это же касается и других мобильных устройств: планшетных компьютеров, КПК и т.п..

Ноутбуки выского уровня довольно часто уже сейчас поддерживают MIMO вплоть до 3х3 (MacBook Pro и тп).

Давайте рассмотрим основные типы MIMO в сетях стандарта WiFi.Сейчас мы опустим детализацию количества передатчиков и приемников. Важно понять принцип.

Первый тип: Разнесение при Получении сигнала на WiFi устройстве

Если в точке приема есть не менее двух связанных приемников с разнесенными антеннами,то вполне реально провести анализ всех копий на каждом приемнике для выбора лучших сигналов.Далее с этими сигналами можно проводить различные манипуляции, но нас интересует, прежде всего,возможность их комбинирования с помощью технологии MRC (Maximum Ratio Combined). Технология MRC подробнее будет рассмотрена далее.

 

 

Второй тип: Разнесение при Отправке сигнала на WiFi устройстве

Если в точке отправки есть не менее двух связанных передатчиков WiFi с разнесенными антеннами, то появляется возможность отправки группы идентичных сигналов для увеличения количества копий информации, повышения надежности на передаче и снижения необходимости перепосылки данных в радиоканале, в случае их потерь.

Третий тип: Пространственное мультиплексирование сигналов на устройстве стандарта WiFi(объединение сигналов)

Если в точке отправки и в точке приема есть не менее двух связанных передатчиков WiFi с разнесенными антеннами, то появляется возможность отправки набора разной информации поверх разных сигналов с целью создания возможности виртуального объединения таких информационных потоков в один канал передачи данных, общая пропускная способность которого стремится к сумме отдельных потоков, из которых он состоит. Это называется Пространственным мультиплексированием. Но здесь крайне важно обеспечить возможность качественного разделения всех исходных сигналов, что требует большой величины SNR – соотношения сигнал/шум.

 

Технология MRC (maximumratiocombined) используется во многих современных Точках Доступа Wi-Fi корпоративного класса. MRC направлен на подъем уровня сигнала в направлении от Wi-Fi клиента к Точке Доступа WiFi 802.11.Алгоритм работы MRC подразумевает сбор на нескольких антеннах и приемниках всех прямых и переотраженных при многолучевом распространении сигналов. Далее специальный процессор (DSP) отбирает лучший сигнал с каждого приемника и выполняет комбинирование. Фактически математическая обработка реализует виртуальный фазовый сдвиг для создания положительной интерференции со сложением сигналов. Таким образом результирующий суммарный сигнал значительно лучше по характеристикам, чем все исходные.

MRC позволяет обеспечивать значительно лучшие условия работы маломощных мобильных устройств в сети стандарта Wi-Fi.

 

 

В системах WiFi 802.11n достоинства многолучевого распространения используются для одновременной передачи нескольких радиосигналов. Каждый из этих сигналов, называемых «пространственными потоками», отправляется с отдельной антенны с помощью отдельного передатчика. Вследствие наличия некоторого расстояния между антеннами каждый сигнал следует к приемнику по немного отличающемуся пути. Этот эффект называется «пространственным разнесением». Приемник также оборудован несколькими антеннами со своими отдельными радиомодулями, которые независимо декодируют поступающие сигналы, и каждый сигнал объединяется с сигналами от других приемных радиомодулей. В результате этого одновременно осуществляется прием нескольких потоков данных. Это обеспечивает значительно более высокую пропускную способность, чем в прежних системах стандарта WiFi 802.11, но и требует наличия клиента с поддержкой 802.11n.

 

 

Теперь немного углубимся в данную тему:В устройствах стандарта WiFi с MIMO возможно разделение всего входящего информационного потока на несколько различных потоков данных с помощью пространственного мультиплексирования для последующей их отправки. Используется несколько передатчиков и антенн для отправки различных потоков в одном частотном канале. Можно визуализировать это таким образом, что некоторая текстовая фраза может передаваться так что первое слово отправляется через один передатчик, второе через другой передатчик и т.д.Естественно, принимающая сторона должна поддерживать такой же функционал (MIMO) для полноценного выделения различных сигналов, их пересборки и объединения с помощью опять же пространственного мультиплексирования. Так мы получаем возможность восстановить исходный информационный поток. Представленная технология позволяет разделить большой поток данных на набор меньших потоков и передавать их отдельно один от другого. В целом это дает возможность более эффективно утилизировать радиосреду и конкретно частоты выделенные для Wi-Fi.

 

Технология стандарта WiFi 802.11n также определяет как MIMO может быть использована для улучшения уровня SNR на приемнике используя управление диаграммой направленности на передаче (transmit beamforming). С данной техникой возможно управлять процессом отправки сигналов с каждой антенны так, чтобы улучшились параметры принимаемого сигнала в приемнике.  Другими словами в дополнение к отправке множественных потоков  данных могут быть использованы множественные передатчики, чтобы достичь более высокого SNR в точке приема и, в результате, большей скорости передачи данных на клиенте.  Необходимо отметить следующие вещи:1. Процедура управления диаграммой направленности (transmit beamforming), определенная в стандарте Wi-Fi 802.11n, требует совместной работы с приемником (фактически с клиентским устройством) для получения обратной связи о состоянии сигнала на приемнике. Здесь необходимо иметь поддержку этой функциональности на обеих сторонах канала – как на передатчике, так и на приемнике.2. В силу сложности данной процедуры управление диаграммой направленности (transmit beamforming) не было поддержано в первом поколении чипов 802.11n как на стороне терминалов, так и на стороне Точек Доступа. В настоящее время большинство существующих чипов для клиентских устройств также Не поддерживают данный функционал.3. Существуют решения для построения сетей Wi-Fi, которые позволяют полноценно управлять диаграммой направленности на Точках Доступа без необходимости получения обратной связи от клиентских устройств.

Для получения анонсов при выходе новых тематических статей или появлении новых материалов на сайте предлагаем подписаться.

Присоединяйтесь к нашей группе на Facebook: www.facebook.com/Wi.Life.ruМы публикуем новости, информацию о выходе новых статей и расширении контента основных модулей ресурса Wi-Life.ru

Wi-Life.Team

Использование материалов этого сайта разрешено только с согласия Wi-Life.ru и наличии прямой ссылки на источник.

Please enable JavaScript to view the comments powered by Disqus. blog comments powered by

wi-life.ru

Fi - это... Что такое Wi-Fi?

Логотип Wi-Fi

Wi-Fi — торговая марка Wi-Fi Alliance для беспроводных сетей на базе стандарта IEEE 802.11. Под аббревиатурой Wi-Fi (от английского словосочетания Wireless Fidelity, которое можно дословно перевести как «высокая точность беспроводной передачи данных») в настоящее время развивается целое семейство стандартов передачи цифровых потоков данных по радиоканалам.

Любое оборудование, соответствующее стандарту IEEE 802.11, может быть протестировано в Wi-Fi Alliance и получить соответствующий сертификат и право нанесения логотипа Wi-Fi.

История

Wi-Fi был создан в 1991 году NCR Corporation/AT&T (впоследствии — Lucent Technologies и Agere Systems) в Ньивегейн, Нидерланды. Продукты, предназначавшиеся изначально для систем кассового обслуживания, были выведены на рынок под маркой WaveLAN и обеспечивали скорость передачи данных от 1 до 2 Мбит/с. Создатель Wi-Fi — Вик Хейз (Vic Hayes) находился в команде, участвовавшей в разработке таких стандартов, как IEEE 802.11b, IEEE 802.11a и IEEE 802.11g. В 2003 году Вик ушёл из Agere Systems. Agere Systems не смогла конкурировать на равных в тяжёлых рыночных условиях, несмотря на то, что её продукция занимала нишу дешёвых Wi-Fi решений. 802.11abg all-in-one чипсет от Agere (кодовое имя: WARP) плохо продавался, и Agere Systems решила уйти с рынка Wi-Fi в конце 2004 года.

Стандарт IEEE 802.11n был утверждён 11 сентября 2009 года. Его применение позволяет повысить скорость передачи данных практически вчетверо по сравнению с устройствами стандартов 802.11g (максимальная скорость которых равна 54 Мбит/с), при условии использования в режиме 802.11n с другими устройствами 802.11n. Теоретически 802.11n способен обеспечить скорость передачи данных до 600 Мбит/с[1].

Как сообщает Cult of Mac [1], 29 июля 2011 года IEEE, Институт инженеров по электротехнике и электронике — IEEE выпустил официальную версию стандарта IEEE 802.22. Это есть Super Wi-Fi. Системы и устройства, поддерживающие этот стандарт, позволят передавать данные на скорости до 22 Мб/с в радиусе 100 км от ближайшего передатчика.

Происхождение названия

Термин «Wi-Fi» изначально был придуман как игра слов для привлечения внимания потребителя «намёком» на Hi-Fi (англ. High Fidelity — высокая точность). Несмотря на то, что поначалу в некоторых пресс-релизах WECA фигурировало словосочетание «Wireless Fidelity» («беспроводная точность»)[2], на данный момент от такой формулировки отказались, и термин «Wi-Fi» никак не расшифровывается[3].

Принцип работы

Обычно схема Wi-Fi сети содержит не менее одной точки доступа и не менее одного клиента. Также возможно подключение двух клиентов в режиме точка-точка (Ad-hoc), когда точка доступа не используется, а клиенты соединяются посредством сетевых адаптеров «напрямую». Точка доступа передаёт свой идентификатор сети (SSID (англ.)) с помощью специальных сигнальных пакетов на скорости 0,1 Мбит/с каждые 100 мс. Поэтому 0,1 Мбит/с — наименьшая скорость передачи данных для Wi-Fi. Зная SSID сети, клиент может выяснить, возможно ли подключение к данной точке доступа. При попадании в зону действия двух точек доступа с идентичными SSID приёмник может выбирать между ними на основании данных об уровне сигнала. Стандарт Wi-Fi даёт клиенту полную свободу при выборе критериев для соединения. Более подробно принцип работы описан в официальном тексте стандарта[4].

Однако, стандарт не описывает все аспекты построения беспроводных локальных сетей Wi-Fi. Поэтому каждый производитель оборудования решает эту задачу по-своему, применяя те подходы, которые он считает наилучшими с той или иной точки зрения. Поэтому возникает необходимость классификации способов построения беспроводных локальных сетей.

По способу объединения точек доступа в единую систему можно выделить:

  • Автономные точки доступа (называются также самостоятельные, децентрализованные, умные)
  • Точки доступа, работающие под управлением контроллера (называются также «легковесные», централизованные)
  • Бесконтроллерные, но не автономные (управляемые без контроллера)

По способу организации и управления радиоканалами можно выделить беспроводные локальные сети:

  • Со статическими настройками радиоканалов
  • С динамическими (адаптивными) настройками радиоканалов
  • Со «слоистой» или многослойной структурой радиоканалов

Преимущества Wi-Fi

Беспроводной Интернет на пляже
  • Позволяет развернуть сеть без прокладки кабеля, что может уменьшить стоимость развёртывания и/или расширения сети. Места, где нельзя проложить кабель, например, вне помещений и в зданиях, имеющих историческую ценность, могут обслуживаться беспроводными сетями.
  • Позволяет иметь доступ к сети мобильным устройствам.
  • Wi-Fi устройства широко распространены на рынке. Гарантируется совместимость оборудования благодаря обязательной сертификации оборудования с логотипом Wi-Fi.
  • Мобильность. Вы больше не привязаны к одному месту и можете пользоваться Интернетом в комфортной для вас обстановке.
  • В пределах Wi-Fi зоны в сеть Интернет могут выходить несколько пользователей с компьютеров, ноутбуков, телефонов и т. д.
  • Излучение от Wi-Fi устройств в момент передачи данных на два порядка (в 100 раз) меньше, чем у сотового телефона.

Недостатки Wi-Fi

  • В диапазоне 2.4 GHz работает множество устройств, таких как устройства, поддерживающие Bluetooth, и др, и даже микроволновые печи, что ухудшает электромагнитную совместимость.
  • Производителями оборудования указывается скорость на layer1 (OSI), в результате чего создаётся иллюзия, что производитель оборудования завышает скорость, но на самом деле в Wi-Fi существует сильный[неизвестный термин] служебный overhead[неизвестный термин]. Получается, что скорость передачи данных на L2 (OSI) в Wi-Fi сети всегда ниже заявленной скорости на L1 (OSI). Реальная скорость зависит от overhead[неизвестный термин], который зависит уже от наличия между устройствами физических преград (мебель, стены), наличия помех от других беспроводных устройств или электронной аппаратуры, расположения устройств относительно друг друга и т. п.[5]
  • Частотный диапазон и эксплуатационные ограничения в различных странах неодинаковы. Во многих европейских странах разрешены два дополнительных канала, которые запрещены в США; В Японии есть ещё один канал в верхней части диапазона, а другие страны, например Испания, запрещают использование низкочастотных каналов. Более того, некоторые страны, например Россия, Беларусь и Италия, требуют регистрации всех сетей Wi-Fi, работающих вне помещений, или требуют регистрации Wi-Fi-оператора[6].
  • Как было упомянуто выше — в России точки беспроводного доступа, а также адаптеры Wi-Fi с ЭИИМ, превышающей 100 мВт (20 дБм), подлежат обязательной регистрации.[7]
  • Стандарт шифрования WEP может быть относительно легко взломан даже при правильной конфигурации (из-за слабой стойкости алгоритма). Новые устройства поддерживают более совершенный протокол шифрования данных WPA и WPA2. Принятие стандарта IEEE 802.11i (WPA2) в июне 2004 года сделало доступной более безопасную схему, которая доступна в новом оборудовании. Обе схемы требуют более стойкий пароль, чем те, которые обычно назначаются пользователями. Многие организации используют дополнительное шифрование (например VPN) для защиты от вторжения. На данный момент основным методом взлома WPA2 является подбор пароля, поэтому рекомендуется использовать сложные цифро-буквенные пароли для того, чтобы максимально усложнить задачу подбора пароля.
  • В режиме ad-hoc стандарт предписывает лишь реализовать скорость 11 Мбит/сек (802.11b)[8]. Шифрование WPA(2) недоступно, только легковзламываемый WEP.

Коммерческое использование Wi-Fi

Коммерческий доступ к сервисам на основе Wi-Fi предоставляется в таких местах, как Интернет-кафе, аэропорты и кафе по всему миру (обычно эти места называют Wi-Fi-кафе), однако их покрытие можно считать точечным по сравнению с сотовыми сетями:

  • Ozone и OzoneParis Во Франции. В сентябре 2003 года Ozone начала развёртывание сети OzoneParis через The City of Lights. Конечная цель — создание централизованной сети Wi-Fi, полностью покрывающей Париж. Основной принцип Ozone Pervasive Network заключается в том, что это сеть национального масштаба.
  • WiSE Technologies предоставляет коммерческий доступ в аэропортах, университетах, и независимых кафе на территории США.
  • T-Mobile обеспечивает работу хот-спотов для сети Starbucks в США и Великобритании, а также более 7500 хот-спотов в Германии.
  • Pacific Century Cyberworks обеспечивает доступ в магазинах Pacific Coffee в Гонконге.
  • Columbia Rural Electric Association пытается развернуть сеть 2.4 ГГц Wi-Fi на территории площадью 9500 км², расположенной между округами Уалла-Уалла и Колумбия в штате Вашингтон и Юматилла, Орегон. В список других крупных сетей в США также входят: Boingo, Wayport и iPass.
  • Sify, Индийский Интернет-провайдер, установил 120 точек доступа в Бангалоре: в отелях, галереях и правительственных учреждениях.
  • Vex имеет большую сеть хот-спотов, расположенную по всей территории Бразилии. Telefónica Speedy WiFi начала предоставлять свои сервисы в новой растущей сети, распространившейся на территорию штата São Paulo.
  • BT Openzone владеет многими хот-спотами в Великобритании, работающими в McDonald's, и имеет роуминговое соглашение с T-Mobile UK и ReadyToSurf. Их клиенты также имеют доступ к хот-спотам The Cloud.
  • Netstop обеспечивает доступ в Новой Зеландии.
  • В Эстонии имеется несколько коммерческих операторов, крупнейший из них Elion, обеспечивает АЗС Statoil по всей Эстонии и крупные торговые центры.
  • Компания Вымпелком, под торговой маркой Билайн, купив Golden Telecom, осуществляет поддержку самой большой в мире[9] городской сети Wi-Fi в Москве. Каналы доступа к проводной сети обеспечивает крупнейший московский провайдер Корбина Телеком. Развернуты сети и в Московских аэропортах Шереметьево и Домодедово.
  • Компания EarthLink планировала в третьем квартале 2007 года полностью подключить Филадельфию (США) к сети Интернет через беспроводные каналы связи. Это должен был быть первый город-мегаполис в США, полностью охваченный Wi-Fi. Предполагаемая стоимость должна была составлять 20-22 доллара в месяц при скорости подключения 1 Мбит/сек. Для малоимущих жителей Филадельфии — 12-15 долларов в месяц. В настоящее время центр города и прилегающие к нему районы уже подключены. Подключение остальных районов будет производиться по мере установки передатчиков.
  • Укртелеком на Украине предоставляет услуги Wi-Fi («ОГО! Wi-Fi») по всем городам страны. По замыслу покрытие распространяется не только на центры городов, крупные отели, рестораны, кафе, вокзалы аэропорты, но и на библиотеки, отделения «Телекомсервис» и т. д. В действительности система покрывает только примерно 70 % ресторанов быстрого питания McDonalds, и некоторые другие. Половина из существующих точек часто не активны, либо к ним невозможно подключится, так как установлены обычные роутеры, которые позволяют подключать не более 11 абонентов[источник не указан 430 дней].
  • АИСТ в Одесской области предоставляет доступ к сети Интернет посредством Wi-Fi учебным заведениям, фермерским хозяйствам, населению в частном секторе.
  • Белтелеком в Республике Беларусь предоставляет доступ к сети Интернет посредством Wi-Fi под торговой маркой «ByFly» с оплатой по трафику или поминутно. В каждом городе имеется не менее одной точки доступа, как правило — в отделении почты. В крупных городах, областных центрах имеется множество хот-спотов[источник не указан 236 дней].
  • В Армении в Ереване оператор Orange развернул бесплатную Wi-Fi сеть в общественном транспорте (автобусы) и на остановках ожидания транспорта. Проект запущен в 2011 г.[10]

Беспроводные технологии в промышленности

Для использования в промышленности технологии Wi-Fi предлагаются пока ограниченным числом поставщиков. Так Siemens Automation & Drives предлагает Wi-Fi-решения для своих контроллеров SIMATIC в соответствии со стандартом IEEE 802.11g в свободном ISM-диапазоне 2,4 ГГц и обеспечивающим максимальную скорость передачи 54 Мбит/с. Данные технологии применяются в основном для управления движущимися объектами и в складской логистике, а также в тех случаях, когда по какой-либо причине невозможно прокладывать проводные сети Ethernet.

Wi-Fi и телефоны сотовой связи

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 12 мая 2011.

Некоторые считают, что Wi-Fi и подобные ему технологии со временем могут заменить сотовые сети, такие как GSM. Препятствиями для такого развития событий в ближайшем будущем являются отсутствие роуминга и возможностей аутентификации (см. 802.1x, SIM-карты и RADIUS), ограниченность частотного диапазона и сильно ограниченный радиус действия Wi-Fi. Более правильным выглядит сравнение Wi-Fi с другими стандартами сотовых сетей, таких как UMTS, CDMA или WiMAX.

Тем не менее, Wi-Fi пригоден для использования VoIP в корпоративных сетях или в среде SOHO. Первые образцы оборудования появились уже в начале 2000-х, однако на рынок они вышли только в 2005 году. Тогда такие компании, как Zyxel, UT Starcomm, Samsung, Hitachi и многие другие, представили на рынок VoIP Wi-Fi-телефоны по «разумным» ценам. В 2005 году ADSL ISP провайдеры начали предоставлять услуги VoIP своим клиентам (например нидерландский ISP XS4All). Когда звонки с помощью VoIP стали очень дешёвыми, а зачастую вообще бесплатными, провайдеры, способные предоставлять услуги VoIP, получили возможность открыть новый рынок — услуг VoIP. Телефоны GSM с интегрированной поддержкой возможностей Wi-Fi и VoIP начали выводиться на рынок, и потенциально они могут заменить проводные телефоны.

В настоящий момент непосредственное сравнение Wi-Fi и сотовых сетей нецелесообразно. Телефоны, использующие только Wi-Fi, имеют очень ограниченный радиус действия, поэтому развёртывание таких сетей обходится очень дорого. Тем не менее, развёртывание таких сетей может быть наилучшим решением для локального использования, например, в корпоративных сетях. Однако устройства, поддерживающие несколько стандартов, могут занять значительную долю рынка.

Стоит заметить, что при наличии в данном конкретном месте покрытия как GSM, так и Wi-Fi, экономически намного более выгодно использовать Wi-Fi, разговаривая посредством сервисов Интернет-телефонии. Например, клиент Skype давно существует в версиях как для смартфонов, так и для КПК.

Международные проекты

Другая бизнес-модель состоит в соединении уже имеющихся сетей в новые. Идея состоит в том, что пользователи будут разделять свой частотный диапазон через персональные беспроводные маршрутизаторы, комплектующиеся специальным ПО. Например FON — испанская компания, созданная в ноябре 2005 года. Сейчас сообщество объединяет более 1 000 000 пользователей в Европе, Азии и Америке и быстро развивается. Пользователи делятся на три категории:

  • linus — выделяющие бесплатный доступ в Интернет,
  • bills — продающие свой частотный диапазон,
  • aliens — использующие доступ через bills.

Таким образом, система аналогична пиринговым сервисам. Несмотря на то, что FON получает финансовую поддержку от таких компаний, как Google и Skype, лишь со временем будет ясно, будет ли эта идея действительно работать.

Сейчас у этого сервиса есть три основные проблемы. Первая заключается в том, что для перехода проекта из начальной стадии в основную требуется больше внимания со стороны общественности и СМИ. Нужно также учитывать тот факт, что предоставление доступа к вашему интернет-каналу другим лицам может быть ограничено вашим договором с Интернет-провайдером. Поэтому интернет-провайдеры будут пытаться защитить свои интересы. Так же, скорее всего, поступят звукозаписывающие компании, выступающие против свободного распространения MP3.

В России основное количество точек доступа сообщества FON расположено в московском регионе.

Израильская компания WeFi создала общую сеть социальной направленности[источник не указан 236 дней], с возможностью поиска сетей Wi-Fi и общения между пользователями. Программа и система в целом была создана под руководством Йосси Варди (Yossi Vardi), одного из создателей компании Mirabilis, и протокола ICQ.

Wi-Fi в игровой индустрии

  • совместим с игровыми консолями и КПК и позволяет вести сетевую игру через любую точку доступа или в режиме точка-точка.
  • Все игровые консоли седьмого поколения имеют поддержку стандартов Wi-Fi IEEE 802.11g.
  • Sony PSP имеет поддержку беспроводной сети (AOSS), которая включается переключением находящейся в верхней части консоли кнопки для соединения с хот-спотами Wi-Fi или других беспроводных соединений.
  • Nintendo DS, Nintendo DS Lite, Nintendo DSi и Nintendo 3DS также поддерживают стандарт Wi-Fi IEEE 802.11g.

Некоммерческое использование Wi-Fi

Пока коммерческие сервисы пытаются использовать существующие бизнес-модели для Wi-Fi, многие группы, сообщества, города, и частные лица строят свободные сети Wi-Fi, часто используя общее пиринговое соглашение для того, чтобы сети могли свободно взаимодействовать друг с другом.

Многие муниципалитеты объединяются с локальными сообществами, чтобы расширить свободные Wi-Fi-сети. Некоторые группы строят свои Wi-Fi-сети, полностью основанные на добровольной помощи и пожертвованиях.

Для получения более подробной информации смотрите раздел совместные беспроводные сети, где можно также найти список свободных сетей Wi-Fi, расположенных по всему миру (см. также Бесплатные точки доступа Wi-Fi в Москве).

Схема создания ячеистой сети (mesh-network) с использованием оборудования Wi-Fi

OLSR (en) — один из протоколов, используемых для создания свободных сетей. Некоторые сети используют статическую маршрутизацию, другие полностью полагаются на OSPF. В Израиле разрабатывается протокол WiPeer для создания бесплатных P2P-сетей на основе Wi-Fi.

В Wireless Leiden разработали собственное программное обеспечение для маршрутизации под названием LVrouteD для объединения Wi-Fi-сетей, построенных на полностью беспроводной основе. Бо́льшая часть сетей построена на основе ПО с открытым кодом, или публикуют свою схему под открытой лицензией. (превращает любой ноутбук с установленной Mac OS X и Wi-Fi-модулем в открытый узел Wi-Fi-сети). Также следует обратить внимание на netsukuku — Разработка всемирной бесплатной mesh-сети.

Некоторые небольшие страны и муниципалитеты уже обеспечивают свободный доступ к хот-спотам Wi-Fi и доступ к Интернету через Wi-Fi по месту жительства для всех. Например, Королевство Тонга и Эстония, которые имеют большое количество свободных хот-спотов Wi-Fi по всей территории страны. В Париже OzoneParis предоставляет свободный доступ в Интернет неограниченно всем, кто способствует развитию Pervasive Network, предоставляя крышу своего дома для монтажа оборудования Wi-Fi. Unwire Jerusalem — это проект установки свободных точек доступа Wi-Fi в крупных торговых центрах Иерусалима. Многие университеты обеспечивают свободный доступ к Интернет через Wi-Fi для своих студентов, посетителей и всех, кто находится на территории университета.

Некоторые коммерческие организации, такие как Panera Bread, предоставляют свободный доступ к Wi-Fi постоянным клиентам. Заведения McDonald’s Corporation тоже предоставляют доступ к Wi-Fi под брендом McInternet. Этот сервис был запущен в ресторане в Оук-Брук, Иллинойс; он также доступен во многих ресторанах в Лондоне, Москве и Киеве.

Тем не менее, есть и третья подкатегория сетей, созданных сообществами и организациями, такими как университеты, где свободный доступ предоставляется членам сообщества, а тем, кто в него не входит, доступ предоставляется на платной основе. Пример такого сервиса — сеть Sparknet в Финляндии. Sparknet также поддерживает OpenSparknet — проект, в котором люди могут делать свои собственные точки доступа частью сети Sparknet, получая от этого определённую выгоду.

В последнее время коммерческие Wi-Fi-провайдеры строят свободные хот-споты Wi-Fi и хот-зоны. Они считают, что свободный Wi-Fi-доступ привлечёт новых клиентов и инвестиции вернутся.

Бесплатный доступ к Интернету через Wi-Fi

Независимо от исходных целей (привлечение клиентов, создание дополнительного удобства или чистый альтруизм) во всём мире и в России, в том числе, растёт количество бесплатных хот-спотов, где можно получить доступ к наиболее популярной глобальной сети (Интернет) совершенно бесплатно. Это могут быть и крупные транспортные узлы, где подключиться можно самостоятельно в автоматическом режиме, и бары, где для подключения необходимо попросить карточку доступа у персонала, и даже просто территории городского ландшафта, являющиеся местом постоянного скопления людей.

Стандартами Wi-Fi не предусмотрено шифрование передаваемых данных в открытых сетях. Это значит, что все данные, которые передаются по открытому беспроводному соединению, могут быть прослушаны злоумышленниками при помощи программ-снифферов. К таким данным могут относиться пары логин/пароль, номера банковских счетов, пластиковых карт, конфиденциальная переписка. Поэтому, при использовании бесплатных хот-спотов не следует передавать в интернет подобные данные.

Wi-Fi и ПО

  • ОС семейства BSD (FreeBSD, NetBSD, OpenBSD) могут работать с большинством адаптеров, начиная с 1998 года. Драйверы для чипов Atheros, Prism, Harris/Intersil и Aironet (от соответствующих производителей Wi-Fi устройств) обычно входят в ОС BSD начиная с версии 3. В OpenBSD 3.7, было включено больше драйверов для беспроводных чипов, включая RealTek RTL8180L, Ralink RT25x0, Atmel AT76C50x, и Intel 2100 и 2200BG/2225BG/2915ABG. Благодаря этому частично удалось решить проблему нехватки открытых драйверов беспроводных чипов для OpenBSD. Возможно некоторые драйверы, реализованные для других BSD-систем, могут быть перенесены, если они ещё не были созданы. NDISwrapper также доступен для FreeBSD.
  • Mac OS. Адаптеры производства Apple поддерживались с системы Mac OS 9, выпущенной в 1999 году. С 2006 года все настольные компьютеры и ноутбуки Apple Inc. (а также появившиеся позднее телефоны iPhone, плееры iPod Touch и планшетные компьютеры iPad) штатно оснащаются адаптерами Wi-Fi, сеть Wi-Fi в настоящее время является основным решением Apple для передачи данных, и полностью поддерживается Mac OS X. Возможен режим работы адаптера компьютера в качестве точки доступа, что позволяет при необходимости связывать компьютеры Macintosh в беспроводные сети в отсутствии инфраструктуры. Darwin и Mac OS X, несмотря на частичное совпадение с BSD, имеют свою собственную, уникальную реализацию Wi-Fi.
  • Linux: Начиная с версии 2.6, поддержка некоторых Wi-Fi устройств появилась непосредственно в ядре Linux. Поддержка для чипов Orinoco, Prism, Aironet, Atmel, Ralink включена в основную ветвь ядра, чипы ADMtek и Realtek RTL8180L поддерживаются как закрытыми драйверами производителей, так и открытыми, написанными сообществом. Intel Calexico поддерживаются открытыми драйверами, доступными на SourceForge.net. Atheros поддерживается через открытые проекты. Поддержка других беспроводных устройств доступна при использовании открытого драйвера NDISwrapper, который позволяет Linux-системам, работающим на компьютерах с архитектурой Intel x86, «оборачивать» драйвера производителя для Microsoft Windows для прямого использования. Известна по крайней мере одна коммерческая реализация этой идеи. FSF создало список рекомендуемых адаптеров, более подробную информацию можно найти на сайте Linux wireless.
  • Существует довольно большое количество Linux-based прошивок для беспроводных роутеров, распространяемых под лицензией GNU GPL. К ним относятся так называемая «прошивка от Олега», FreeWRT, OpenWRT, X-WRT, DD-WRT и т. д. Как правило, они поддерживают гораздо больше функций, чем оригинальные прошивки. Необходимые сервисы легко добавляются путём установки соответствующих пакетов. Список поддерживаемого оборудования постоянно растёт.
  • В ОС семейства Microsoft Windows поддержка Wi-Fi обеспечивается, в зависимости от версии, либо посредством драйверов, качество которых зависит от поставщика, либо средствами самой Windows.
    • Ранние версии Windows, такие как Windows 2000 и младше, не содержат встроенных средств для настройки и управления, и тут ситуация зависит от поставщика оборудования.
    • Microsoft Windows XP поддерживает настройку беспроводных устройств. И хотя первоначальная версия включала довольно слабую поддержку, она значительно улучшилась с выходом Service Pack 2, а с выходом Service Pack 3 была добавлена поддержка WPA2.
    • Microsoft Windows Vista содержит улучшенную по сравнению с Windows XP поддержку Wi-Fi.
    • Microsoft Windows 7 поддерживает все современные на момент её выхода беспроводные устройства и протоколы шифрования. Помимо прочего в Windows 7 создана возможность создавать виртуальные адаптеры Wi-Fi, что теоретически позволило бы подключаться не к одной Wi-Fi-сети, а к нескольким сразу. На практике в Windows 7 поддерживается создание только одного виртуального адаптера, при условии написания специальных драйверов[11]. Это может быть полезно при использовании компьютера в локальной Wi-Fi-сети и, одновременно, в Wi-Fi-сети подключённой к Интернет.

Юридический статус

Юридический статус Wi-Fi различен в разных странах. В США диапазон 2.5 ГГц разрешается использовать без лицензии, при условии, что мощность не превышает определённую величину, и такое использование не создаёт помех тем, кто имеет лицензию.

Россия

В России использование Wi-Fi без разрешения на использование частот от Государственной комиссии по радиочастотам (ГКРЧ) возможно для организации сети внутри зданий, закрытых складских помещений и производственных территорий[12]. Для легального использования внеофисной беспроводной сети Wi-Fi (например, радиоканала между двумя соседними домами) необходимо получение разрешения на использование частот. Действует упрощённый порядок выдачи разрешений на использование радиочастот в полосе 2400—2483,5 МГц (стандарты 802.11b и 802.11g; каналы 1-13), для получения такого разрешения не требуется частное решение ГКРЧ. Для использования радиочастот в других диапазонах, в частности 5 ГГц (стандарт 802.11a), необходимо предварительно получить частное решение ГКРЧ. В 2007 году ситуация изменилась с выходом документа: «Постановление от 25 июля 2007 г. № 476 О внесении изменений в постановление Правительства Российской Федерации от 12 октября 2004 г. № 539 „О порядке регистрации радиоэлектронных средств и высокочастотных устройств“»[13]. Шестнадцатым пунктом постановления из списка оборудования, подлежащего регистрации было исключено[14]:

  • Пользовательское (оконечное) оборудование радиодоступа (беспроводного доступа) в полосе радиочастот 2400—2483,5 МГц с мощностью излучения передающих устройств до 100 мВт включительно.

Также во исполнение протокольной записи к решению ГКРЧ от 19 августа 2009 г. № 09-04-09, ГКРЧ решила[15] (п.2):

  • Выделить полосы радиочастот 5150-5350 МГц и 5650-6425 МГц для применения на территории Российской Федерации за исключением городов, указанных в приложении № 2 [2], РЭС фиксированного беспроводного доступа гражданами Российской Федерации и российскими юридическими лицами без оформления отдельных решений ГКРЧ для каждого физического или юридического лица.

Указанным полосам частот соответствуют стандарты 802.11a/b/g/n и каналы с номерами из диапазонов 36-64 и 132—165. Однако, в приложении 2 перечислено 164 крупнейших города России, в которых указанные частоты для создания беспроводных сетей использовать нельзя (см. п.6).

За нарушение порядка использования радиоэлектронных средств предусматривается ответственность по статьям 13.3 и 13.4 Кодекса Российской Федерации об административных правонарушениях (КоАП РФ)[16]. Так, в июле 2006 года несколько компаний в Ростове-на-Дону были оштрафованы за эксплуатацию открытых сетей Wi-Fi (хот-спотов)[17]. Совсем недавно Федеральная служба по надзору в сфере массовых коммуникаций, связи и охраны культурного наследия издало новое разъяснение использования и регистрации всех устройств, использующих Wi-Fi. Позднее оказалось, что существует комментарий Россвязьохранкультуры[18], который частично опровергает недоразумения, развитые сетевыми СМИ.

Решением от 15 июля 2010 г., ГКРЧ России отменяет выдачу обязательных частных Решений ГКРЧ для использования систем фиксированного беспроводного доступа в диапазонах 5150-5350 МГц и 5650-6425 МГц. Ограничение на данные диапазоны частот снято для всей территории России.[19]

Украина

На Украине использование Wi-Fi без разрешения Украинского государственного центра радиочастот (рус.) (укр. Український державний центр радіочастот) возможно лишь в случае использования точки доступа со стандартной всенаправленной антенной (<6 дБ, мощность сигнала ≤ 100 мВт на 2.4 ГГц и ≤ 200 мВт на 5 ГГц) для внутренних (использование внутри помещения) потребностей организации (Решение Национальной комиссии по регулированию связи Украины № 914 от 2007.09.06) В случае использования внешней антенны необходимо регистрировать передатчик и получить разрешение на эксплуатацию радиоэлектронного средства от ДП УДЦР. Кроме того для деятельности по предоставлению телекоммуникационных услуг с применением WiFi необходимо получить лицензию от «НКРЗІ»[20]

Белоруссия

В Белоруссии действует специализированная Государственная комиссия по радиочастотам (ГКРЧ). На основе Постановления Министерства связи и информатизации Республики Беларусь от 26.08.2009 г. № 35 «Перечень радиоэлектронных средств и (или) высокочастотных устройств, не подлежащих регистрации»  (рус.) оборудование Wi-Fi не требует регистрации, при условии, что их параметры удовлетворяют следующим требованиям:- Абонентские станции широкополосного беспроводного доступа, использующие полосы радиочастот 2400—2483,5 МГц, 2500—2700 МГц, 5150-5875 МГц и не использующие внешние антенны (антенны, устанавливаемые вне зданий и сооружений).- Абонентские станции широкополосного беспроводного доступа сети электросвязи общего пользования, использующие полосы радиочастот 3400 — 3800 МГц, 5470-5875 МГц[21].

Безопасность

В 2011 году были опубликованы результаты эксперимента по изучению влияния Wi-Fi на качество спермы, в ходе которого было установлено снижение подвижности сперматозоидов на 11 % и увеличение повреждений их ДНК на 5 % при четырёхчасовой экспозиции эякулята около ноутбука с включённым Wi-Fi[22][23].

См. также

Примечания

  1. ↑ 802.11n Wi-Fi: ответы на 5 больших вопросов
  2. ↑ Wireless Ethernet Compatibility Alliance (WECA) Awards New Wi-Fi Interoperability Certification. Wi-Fi Alliance (8 мая 2000). Архивировано из первоисточника 4 февраля 2012. Проверено 30 ноября 2009.
  3. ↑ Wireless Fidelity' Debunked. Wi-Fi Planet (27 апреля 2007). Архивировано из первоисточника 4 февраля 2012. Проверено 31 августа 2007.
  4. ↑ Get IEEE 802  (англ.) (.pdf). standards.ieee.org. — Ссылка на страницу скачивания полного официального текста стандарта. Архивировано из первоисточника 24 августа 2011. Проверено 13 июня 2009.
  5. ↑ Александр Скуснов, «Тестирование точек доступа: беспроводной Интернет в каждую квартиру», компьютерный еженедельник «Upgrade», № 44 (186), 2004 г.
  6. ↑ Министерство связи и информатизации Республики Беларусь Регистрация беспроводного канала связи Wi-Fi.  (рус.). www.mpt.gov.by (22 июня 2009, 10:55). — При размещении Wi-Fi вне зданий и сооружений требуется согласование с Министерством обороны Республики Беларусь. Архивировано из первоисточника 24 августа 2011. Проверено 15 октября 2010.
  7. ↑ Решение ГКРЧ № 04-03-04-003 от 6.12.2004 г. утверждает основные технические характеристики внутриофисных РЭС (приложение № 1) и содержит список РЭС, подлежащих регистрации в упрощённом порядке, то есть без оформления разрешения на использование радиочастот (приложение № 2).
  8. ↑ Ad-hoc wireless connections limited to 11mbps — The Test Bed
  9. ↑ «Вымпелком» будет транслировать спутниковое ТВ
  10. ↑ WiFi internet – already in all buses of new fleet. www.orangearmenia.am (2012.07.13). Архивировано из первоисточника 5 августа 2012. Проверено 2012.07.13.
  11. ↑ Virtual Wi-Fi в Windows 7
  12. ↑ Решения ГКРЧ  (рус.) (.doc). www.minsvyaz.ru.(недоступная ссылка — история) Проверено 13 июня 2009.
  13. ↑ Постановление от 25 июля 2007 г. № 476 О внесении изменений в постановление Правительства Российской Федерации от 12 октября 2004 г. № 539  (рус.). www.government.ru (28 июля 2007). Архивировано из первоисточника 29 июня 2008.
  14. ↑ Прайм-Тасс Правительство РФ запретило использование в России без регистрации мобильных терминалов ряда систем спутниковой связи и мобильных телефонов стандарта CDMA-800  (рус.). www.sotovik.ru (30 июля 2007). Архивировано из первоисточника 24 августа 2011. Проверено 13 июня 2009.
  15. ↑ www.rfs-rf.ru/idc/groups/public/documents/grhc_resheniya/005027.doc
  16. ↑ Кодекс РФ об административных правонарушениях (КоАП РФ) от 30.12.2001 № 195-ФЗ  (рус.). www.consultant.ru. Архивировано из первоисточника 24 августа 2011. Проверено 13 июня 2009.
  17. ↑ Марианна Дейнеко В Ростове-на-Дону штрафуют за Wi-Fi  (рус.). www.compulenta.ru (19 июля 2006, 17:30). Проверено 13 июня 2009.
  18. ↑ Интернет-газета Comnews публикует материал на тему регистрации радиоэлектронных средств с Wi-Fi  (рус.). www.rsoc.ru. — (материал на странице-первоисточнике был впоследствии заменён другим). Архивировано из первоисточника 1 мая 2008.
  19. ↑ Об использовании полос радиочастот 5150-5350 МГц и 5650-6425 МГц радиоэлектронными средствами фиксированного беспроводного доступа  (рус.). www.grfc.ru. Архивировано из первоисточника 24 августа 2011.
  20. ↑ Рішення № 914 від 06.09.2007 "Про затвердження Переліку радіоелектронних засобів та випромінювальних пристроїв, для експлуатації яких не потрібні дозволи на експлуатацію"  (укр.). www.ucrf.gov.ua. Архивировано из первоисточника 24 августа 2011. Проверено 13 июня 2009.
  21. ↑ Перечень радиоэлектронных средств и (или) высокочастотных устройств, не подлежащих регистрации (Постановление Министерства связи и информатизации Республики Беларусь от 26.08.2009 г. № 35)  (рус.). www.mpt.gov.by/. Архивировано из первоисточника 24 августа 2011. Проверено 23 марта 2010.
  22. ↑ Wi-Fi ухудшает качество спермы  (рус.). medportal.ru. Архивировано из первоисточника 16 октября 2012.
  23. ↑ Use of laptop computers connected to internet through Wi-Fi decreases human sperm motility and increases sperm DNA fragmentation  (англ.). www.fertstert.org. Архивировано из первоисточника 16 октября 2012.

Ссылки

dvc.academic.ru

Wi-Fi, Общие сведения

Общая информация о сети стандарта Wi-Fi (WLAN)

Wireless LAN или, как частно употребляется в рунете, БЛВС (Беспроводная Локально-Вычислительная Сеть) стандарта WiFi 802.11 разрабатывалась для решения задачи беспроводного широкополосного доступа к сетям передачи данных на высоких скоростях.  Основная цель и смысл технологии это предоставление мобильности пользователям с разными типами носимых устройств: - лаптопы/нетбуки - планшетные компьютеры - смартфоны - Wi-Fi радиотелефоны (VoIP over Wi-Fi) и т.п..Пользователь доступа стандарта Wi-Fi становится не привязанным к конкретному столу или розетке ethernet, а может перемещаться по всему офису или всей зоне покрытия сети WiFi и везде иметь доступ к данным безопасно, надежно и быстро.

Подробнее о группе стандартов WIFi 802.11.

Wireless LAN в широком смысле это просто другой способ доступа по сравнению с такими распространенными вариантами доступа как Ethernet разных видов, xDSL и т.п..

Сегодня много технически продвинутых пользователей и, понимая возможности современных технологий, такой пользователь хочет иметь мобильность, свободу выбора коммуникационного устройства, хочет иметь доступ к сети передачи данных в любое время, в любом месте, надежно, с широкой полосой и высоким уровнем качества обслуживания для различных типов приложений. Пользователь также хочет иметь опыт работы в беспроводной сети стандарта WiFI идентичным тому, который он имеет подключив свой лаптоп к корпоративной гигабитной розетке. Но, по большому счету, любого пользователя волнует лишь его терминал с пакетом приложений и возможность доступа в интернет или к корпоративным ресурсам с вышеописанными впечатлениями. То как построена сетевая инфраструктура самого пользователя, как правило, совершенно не заботит. Это задача корпоративных ИТ-служб или Операторов связи. Для решения составляющей качественного и недорого беспроводного доступа к сетям передачи данных и для обеспечения мобильности технология Wi-Fi (группа стандартов WiFi IEEE 802.11) подходит на сегодняшний день лучше всего.  Прежде всего это связано с широкой доступностью и дешевизной клиентского оборудования, а также условно бесплатными частотами в 2.4GHz и в 5GHz. Немаловажно и то, что инфраструктурное оборудование (сетевая часть) уже достигло высокого уровня, оставясь при этом относительно недорогим. Здесь важным является выбор правильной архитектуры сети WiFi и наиболее подходящего производителя WiFi-решений.

С точки зрения типовой трехуровневой сетевой архитектуры сети передачи данных стандарта Wi-Fi находится на уровне доступа (в части радиоподсистемы). Хотя расположение таких элементов, как контроллеры сети WiFi  может широко варьироваться доходя до границы/distribution или уходя в Датацентры. Но об этом позже.Технология Wi-Fi возникла благодаря разработке и развитию техники широкополосных коммуникаций (Spread Spectrum) еще со времен второй мировой войны. Эта техника характеризуется использованием широкой спектральной полосы и низкой пиковой мощностью. Также здесь применяются различные техники модуляции. Сигналы Spread Spectrum во многом походят на радиошум и сложны для детектирования и перехвата без специализированного оборудования. В отличии от узкополосных сигналов, где при узкой спектральной полосе для получения услуги на адекватной дистанции все вкладывается в мощность, здесь схожая энергия "размазывается" по значительно более широкой полосе и каждая несущая имеет значительно меньшую мощность по сравнению с узкополосным сигналом. Это собственно и моделирует идею радиошума, который является ни чем иным как широкополосным маломощным сигналом (хотя для нас шум, конечно, нежелателен). Разного рода широкополосные "глушилки"(джаммеры) и интерференция значительно меньше влияют на данную технологию, чем на системы с узкополосными сигналами. Подробнее об источниках интерференции, влияющих на сети WiFi. Именно по этой причине эта технология использовалась только военными до недавнего времени. Фактически коммерческое развитие технология получила только с 1980-х годов, когда FCC (США) открыла ее для гражданской промышленности, но, естественно, с большим количеством ограничений. В любом случае военные используют иные частоты, совершенно иные схемы модуляции и кодирования, поэтому, строго говоря, несмотря на единую основу, гражданская и военная технологии здесь несовместимы. Подробнее о фундаментальных основах WiFi.

Коммерческий Wi-Fi работает на частотах 2.4GHz и 5GHz.- частотные каналы 2.4GHz используются для стандартов WiFi 802.11n, 11g, 11bВ 2.4GHz используются частотные каналы шириной 22MHz (например в США доступно 11 каналов, в Евросоюзе 13).  В большинстве случаев только 3 канала в 2.4GHz не перекрываются, это каналы 1, 6, 11. Поэтому емкость любой сети в данном частотном спектре WiFi ограниченна именно этим частотным ресурсом. Неперекрывающиеся каналы могут использоваться как параллельно в одной локации для увеличения емкости сети, так и для формирования ячеистой структуры сети Wi-Fi для обеспечения "коврового покрытия" большой территории. При этом соседние ячейки работают на разных каналах.- 5GHz используется для стандартов 802.11n, 11a, 11acВ  частотном спектре 5GHz используются частотные каналы WiFi шириной 20MHz (например в США доступно 23 канала, в Евросоюзе около 19). Но в реальности количество доступных каналов в этом спектре очень сильно варьируется от страны к стране, а во многих странах еще и ограничено для решений не поддерживающих функцию DFS (Dynamic Frequency Selection), которая позволяет не конкурировать подобным устройствам за частоту с метеорологическими радарами, работающим в этом же диапазоне.

Подробнее о частотах и частотных каналах, используемых в сетях WiFi-стандарта.

Для получения базовых знаний о технологии Wi-Fi можно порекомендовать прочитать соответствующую литературу, например: - книга CWNA / Certified Wireless Network Administrator,- книга CCNA Wireless, Official Exam Certification Guide.Для получения продвинутого уровня знаний можно порекомендовать, например:- книга Deploying and Troubleshooting Cisco Wireless LAN Controllers(это книга для специалистов экспертного уровня).Имеет смысл пройти и соответствующую сертификацию по проектированию, развертыванию и эксплуатации сетей стандарта Wi-Fi. Такие обучающие программы предлагают многие крупные производители Wi-Fi решений, например Cisco через Cisco Academy, Ruckus и тп..

Примеры, которые приводятся на сайте, используют только открытые данные из различных источников.

Для получения анонсов при выходе новых тематических статей или появлении новых материалов на сайте предлагаем пройти простую подписку

Присоединяйтесь к нашей группе на Facebook: www.facebook.com/Wi.Life.ruМы публикуем новости, информацию о выходе новых статей и расширении контента основных модулей ресурса Wi-Life.ru 

Wi-Life.Team

Использование материалов этого сайта разрешено только с согласия Wi-Life.ru и наличии прямой ссылки на источник.

Please enable JavaScript to view the comments powered by Disqus. blog comments powered by

wi-life.ru