Что такое WiFi 802.11ac, и насколько он быстрей 802.11n? Wifi скорость g
Какая скорость у wifi стандарта g, протокол вай фай
Стандарты в сетях передачи данных
Стандарты передачи данных
Ethernet
Ethernet — стандарт для построения ЛВС со скоростью передачи данных 10, 100 или 1000 Мбит/.
На сегодняшний день Ethernet является самым распространенным стандартом локальных сетей. В зависимости от типа физической среды передачи данных стандарт Ethernet имеет множество различных модификаций. Первые версии использовали шинную топологию и работали по коаксиальному кабелю (50 Ом) — 10Base5 (до 500 м) и 10Base-2 (до 185 м). Все последующие версии сети Ethernet имеют топологию звезды и работают по витым парам (100 Ом) или оптическим волокнам. Версии 10Base-T (10 Мбит/с) и 100Base-T4 используют кабели категории 3 (2 и 4 пары, соответственно), версия 100BASE-TX (100Мбит/с) использует две пары категории 5. В настоящее время все большую применимость находит сеть 1000Base-T (1 Гбит/с), которая использует четыре пары улучшенной категории 5, категории 6 и выше.
ATM
ATM — универсальная транспортная сеть для передачи голоса, данных и видео. Имеет скорости передачи 25, 155, 622 и 2400 Мбит/c.
Первые две разновидности могут работать по двум витым парам категории 5, аппаратура на 155, 622 и 2400Мбит/c использует в качестве среды передачи оптический кабель.
Стандарт FDDI
FDDI — оптоволоконный интерфейс разделяемых данных. В нем так же, как и в Token Ring, используется схема передачи маркера. Отметим, что в FDDI маркер посылается сразу же за передачей пакета в сеть, тогда как в Token Ring маркер генерируется только после возвращения к рабочей станции посланного ей сообщения. Кроме того, FDDI использует два независимых кольца с противоположной ориентацией для передачи данных (одно из них является резервным). По сравнению с Token Ring время обладания маркера ограничено. В качестве физической среды в FDDI может использоваться только оптоволоконный кабель. Максимальная скорость передачи данных по сети FDDI равна 100 Мбит/с. Оборудование для сетей FDDI в основном производят фирмы DEC, Cisco, 3COM.
Стандарт Token Ring
В ЛВС с передачей маркера сообщения передаются последовательно от одного узла к другому вне зависимости от того, какую топологию имеет сеть — кольцевую или звездообразную. Каждый узел сети получает пакет от соседнего узла. Если данный узел не является адресатом, то он передает тот же самый пакет следующему узлу. Передаваемый пакет может содержать либо данные, направляемые от одного узла другому, либо маркер. Маркер — это короткое сообщение, являющееся признаком незанятости сети. В том случае, когда рабочей станции необходимо передать сообщение, ее сетевой адаптер дожидается поступления маркера, а затем формирует пакет, содержащий данные, и передает этот пакет в сеть. Пакет распространяется по ЛВС от одного сетевого адаптера к другому до тех пор, пока не дойдет до компьютера-адресата, который произведет в нем стандартные изменения. Эти изменения являются подтверждением того, что данные достигли адресата. После этого пакет продолжает движение дальше по ЛВС, пока не возвратится в тот узел, который его сформировал. Узел-источник убеждается в правильности передачи пакета и возвращает в сеть маркер. Важно отметить, что в ЛВС с передачей маркера функционирование сети организовано так, что коллизий возникнуть не может. Скорость передачи данных сетей Token Ring достигает 16 Мбит/с. Оборудование для сетей Token Ring производят многие фирмы, в том числе IBM, 3COM.
Организации занимающиеся стандартизацией в сетях передачи данных
Международная организация по стандартизации [ISO — International Standards Organization ] — основана в 1946 г. для разработки международных стандартов в различных областях техники, производственной и других видах деятельности.
Модель OSI (Open Systems Interconnection) — взаимодействие открытых систем — семиуровневая модель протоколов передачи данных, разработанная Международной организацией по стандартизации (см . – “ISO ”) и CCITT (Consultative Committee for International Telephony and Telegraphy ) для сопряжения различных видов вычислительного и коммуникационного оборудования различных производителей.]
IEEE (Institute of Electrical and Electronic Engineers) — Институт инженеров по электротехнике и радиоэлектронике ( ИИЭР) — организация, созданная в США в 1963 г. Является разработчиком ряда стандартов для локальных вычислительных систем, в том числе — по кабельной системе, физической топологии и методам доступа к среде передачи данных. Наибольшую известность получила серия стандартов 802 (см. далее), ответственность за которые несут Комитет I EEE 802 и (непосредственно) его рабочие группы — подкомитеты.
ITU (International Telecommunications Union) — Международный союз электросвязи ( структурное подразделение ООН ), ранее — Международный консультативный комитет по телефонии и телеграфии — МККТТ [CCITT — Comite’ Consultatif Internationale de Telegraphique et Telephonique].
ITU-T — Комитет по стандартизации телекоммуникаций в составе ITU ( см . ранее ), его рабочий орган — Сектор стандартизации телекоммуникаций — TSS, ITU-TSS (Telecommunications Standardization Sector). В задачи ITU-T входит установление стандартов в области электросвязи. Членами комитета являются министерства связи стран — членов ООН, частные компании, научные организации и торговые объединения.
Каналы передачи данных
Преимуществами данного подхода является сокращение количества специалистов пользователя на местах, единое управление сетью, оптимальность сервисной поддержки сети в ходе её эксплуатации и развития и прочие.
Корпоративным пользователям компания предоставляет услуги по организации виртуальных частных сетей второго уровня (VPN Layer 2). При необходимости возможна организация каналов точка-точка или точка-многоточка. В качестве протоколов канального уровня используются протоколы Frame-Relay или Ethernet 802.1q.
При такой организации каналов пользователи имеют возможность самостоятельно организовывать свою корпоративную IP-сеть (VPN Layer 3) путем наложения ее на предоставленные каналы второго уровня.
Для организации каналов передачи данных компания рекомендует использование оборудования производителя Cisco Systems (при подключении по протоколу Frame-Relay оборудование должно быть оснащено интерфейсами V.35 или G.703/G.704; при подключении по протоколу 802.1q — интерфейсами 10/100/1000 Base-TX/FX). Компания готова оказать содействие по выбору и приобретению данного оборудования, с последующей его первичной настройкой.
В качестве физических линий связи на "последней миле" могут быть использованы оптические линии, медные линии с использованием xDSL-протоколов, каналы первичных сетей PDH/SDH.
Организация передачи данных
В ЭВМ используются два основных способа организации передачи данных между памятью и периферийными устройствами: программно-управляемая передача и прямой доступ к памяти (ПДП).
Программно-управляемая передача данных осуществляется при непосредственном участии и под управлением процессора. Например, при пересылке блока данных из периферийного устройства в оперативную память процессор должен выполнить следующую последовательность шагов:
сформировать начальный адрес области обмена ОП;
занести длину передаваемого массива данных в один из внутренних регистров, который будет играть роль счетчика;
выдать команду чтения информации из УВВ; при этом на шину адреса из МП выдается адрес УВВ, на шину управления — сигнал чтения данных из УВВ, а считанные данные заносятся во внутренний регистр МП;
выдать команду записи информации в ОП; при этом на шину адреса из МП выдается адрес ячейки оперативной памяти, на шину управления — сигнал записи данных в ОП, а на шину данных выставляются данные из регистра МП, в который они были помещены при чтении из УВВ;
модифицировать регистр, содержащий адрес оперативной памяти;
уменьшить счетчик длины массива на длину переданных данных;
если переданы не все данные, то повторить шаги 3-6, в противном случае закончить обмен.
Как видно, программно-управляемый обмен ведет к нерациональному использованию мощности микропроцессора, который вынужден выполнять большое количество относительно простых операций, приостанавливая работу над основной программой. При этом действия, связанные с обращением к оперативной памяти и к периферийному устройству, обычно требуют удлиненного цикла работы микропроцессора из-за их более медленной по сравнению с микропроцессором работы, что приводит к еще более существенным потерям производительности ЭВМ.
Альтернативой программно-управляемому обмену служит прямой доступ к памяти — способ быстродействующего подключения внешнего устройства, при котором оно обращается к оперативной памяти, не прерывая работы процессора. Такой обмен происходит под управлением отдельного устройства — контроллера прямого доступа к памяти (КПДП).
Перед началом работы контроллер ПДП необходимо инициализировать: занести начальный адрес области ОП, с которой производится обмен, и длину передаваемого массива данных. В дальнейшем по сигналу запроса прямого доступа контроллер фактически выполняет все те действия, которые обеспечивал микропроцессор при программно-управляемой передаче.
Последовательность действий КПДП при запросе на прямой доступ к памяти со стороны устройства ввода-вывода следующая:
Принять запрос на ПДП (сигнал DRQ) от УВВ.
Сформировать запрос к МП на захват шин (сигнал HRQ).
Принять сигнал от МП (HLDA), подтверждающий факт перевода микропроцессором своих шин в третье состояние.
Сформировать сигнал, сообщающий устройству ввода-вывода о начале выполнения циклов прямого доступа к памяти (DACK).
Сформировать на шине адреса компьютера адрес ячейки памяти, предназначенной для обмена.
Выработать сигналы, обеспечивающие управление обменом (IOR, MW для передачи данных из УВВ в оперативную память и IOW, MR для передачи данных из оперативной памяти в УВВ).
Уменьшить значение в счетчике данных на длину переданных данных.
Проверить условие окончания сеанса прямого доступа (обнуление счетчика данных или снятие сигнала запроса на ПДП). Если условие окончания не выполнено, то изменить адрес в регистре текущего адреса на длину переданных данных и повторить шаги 5-8.
^ Прямой доступ к памяти позволяет осуществлять параллельно во времени выполнение процессором программы и обмен данными между периферийным устройством и оперативной памятью.
Обычно программно-управляемый обмен используется в ЭВМ для операций ввода-вывода отдельных байт (слов), которые выполняются быстрее, чем при ПДП, так как исключаются потери времени на инициализацию контроллера ПДП, а в качестве основного способа осуществления операций ввода-вывода используют ПДП. Например, в стандартной конфигурации персональной ЭВМ обмен между накопителями на магнитных дисках и оперативной памятью происходит в режиме прямого доступа.
Протоколы теледоступа.
Специфика телекоммуникаций проявляется прежде всего в прикладных протоколах. Среди них наиболее известны протоколы, связанные с Internet, и протоколы ISO-IP (ISO 8473), относящиеся к семиуровневой модели открытых систем. К прикладным протоколам Internet относятся следующие:
Telnet — протокол эмуляции терминала, или, другими словами, протокол реализации дистанционного управления используется для подключения клиента к серверу при их размещении на разных компьютерах, пользователь через свой терминал имеет доступ к компьютеру-серверу;
FTP — протокол файлового обмена (реализуется режим удаленного узла), клиент может запрашивать и получать файлы с сервера, адрес которого указан в запросе;
HTTP (Hypertext Transmission Protocol) — протокол для связи WWW-серверов и WWW-клиентов;
NFS — сетевая файловая система, обеспечивающая доступ к файлам всех UNIX-машин локальной сети, т.е. файловые системы узлов выглядят для пользователя, как единая файловая система;
SMTP, IMAP, POP3 — протоколы электронной почты.
Указанные протоколы реализуются с помощью соответствующего программного обеспечения. Для Telnet, FTP, SMTP на серверной стороне выделены фиксированные номера протокольных портов.
В семиуровневой модели ISO используются аналогичные протоколы. Так, протокол VT соответствует протоколу Telnet, FTAM — FTP, MOTIS — SMTP, CMIP — SNMP, протокол RDA (Remote Database Access) предназначен для доступа к удаленным базам данных.
14.15.16.17.18. Табулирование функции — это вычисление значений функции при изменении аргумента от некоторого начального значения до некоторого конечного значения с определённым шагом. Именно так составляются таблицы значений функций, отсюда и название — табулирование. Необходимость в табулировании возникает при решении достаточно широкого круга задач. Например, при численном решении нелинейных уравнений f(x) = 0, путём табулирования можно отделить (локализовать) корни уравнения, т.е. найти такие отрезки, на концах которых, функция имеет разные знаки. С помощью табулирования можно (хотя и очень грубо) найти минимум или максимум функции. Иногда случается так, что функция не имеет аналитического представления, а её значения получаются в результате вычислений, что часто бывает при компьютерном моделировании различных процессов. Если такая функция будет использоваться в последующих расчётах (например, она должна быть проинтегрирована или продифференцирована и т.п.), то часто поступают следующим образом: вычисляют значения функции в нужном интервале изменения аргумента, т.е. составляют таблицу (табулируют), а затем по этой таблице строят каким-либо образом другую функцию, заданную аналитическим выражением (формулой). Необходимость в табулировании возникает также при построении графиков функции на экране компьютера.
Экстре́мум (лат. extremum — крайний) в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума. В математическом анализе выделяют также понятие локальный экстремум (соответственно минимум или максимум).
123
steptosleep.ru
Wi-Fi 802.11ac или 5G Wi-Fi | Обзор современных беспроводных технологий
- Главная
- Выбрать устройство
- Blu-Ray плеер
- Акустика
- Домашний кинотеатр
- Медиаплеер
- Монитор
- Категории
- 3D
- Выбрать устройство
- Телевизор
- Домашний кинотеатр
- Blu-Ray плеер
- Монитор
- Медиаплеер
- Акустика
- Саундбар
- Наушники
- Роутер
- Фотокамера
- Домашний кинотеатр
- Домашний сервер
- Умный дом
- Бытовая техника
- Фото
- HDD
- Советы
- Сетевые устройства
- Wi-Fi
- Гаджеты
- Android
- Apple
- Планшеты
- Графика
- Матчасть
- Мультимедиа
- Онлайн Сервисы
- Приставки
- PS4
- PS Vita
- PS3
- XBOX One
- XBOX 360
- Статьи вне рубрик
- Обзоры
- Реклама
Поиск
- Услуги
- Реклама
- Контакты
- Главная
- Выбрать устройство
-
Как выбрать GPS-часы для ребенка?
-
mediapure.ru
Что такое WiFi 802.11ac, и насколько он быстрей 802.11n?
Если вы ищите самый быстрый WiFi, вам нужен 802.11ac, здесь все просто. По сути, 802.11ас - ускоренная версия 802.11n (текущий стандарт WiFi, который используется на вашем смартфоне или ноутбуке), предлагающий ускорение ссылок от 433 мегабит в секунду (Мбит/с), и до нескольких гигабит в секунду. Чтобы достичь скорости, которая в десятки раз выше 802.11n, 802.11ac работает исключительно в диапазоне 5ГГц, использует огромную пропускную способность (80-160МГц), работает с 1-8 пространственными потоками (MIMO), и использует своеобразную технологию, называемую "beamforming" (формирование луча). Дополнительные сведения о том, что такое 802.11ac, и как оно со временем заменит проводной гигабитную Ethernet домашнюю и рабочую сеть, мы поговорим дальше.
Как работает 802.11ac.
Несколько лет назад, 802.11n представил некоторую интересную технологию, которая значительно увеличила скорость, по сравнению с 802.11b и g. 802.11ac работает практически так же, как и 802.11n. Например, в то время, как стандарт 802.11n поддерживал до 4 пространственных потоков, и ширину канала до 40МГц, 802.11aс может использовать 8 каналов, и ширину до 80МГц, а их комбинирование может вообще выдать 160МГц. Даже если все остальное останется по-прежнему (а оно не останется), это означает, что 802.11ac оперирует 8х160МГц пространственных потоков, по сравнению с 4х40МГц. Огромная разница, которая позволит выжимать огромные объемы информации из радиоволн.
Чтобы повысить пропускную способность еще больше, 802.11ac также представил модуляцию 256-QAM (по сравнению с 64-QAM в 802.11n), которая буквально сжимает 256 разных сигналов одной частоты, смещая и переплетая каждый из них в иную фазу. Теоретически, это увеличивает спектральную эффективность 802.11ac в 4 раза, по сравнению с 802.11n. Спектральная эффективность - это мера того, как хорошо беспроводной протокол или метод мультиплексирования использует пропускную способность, доступную для него. В диапазоне 5ГГц, в котором каналы достаточно широкие (20МГц+), спектральная эффективность не так важна. В сотовых диапазонах, тем не менее, каналы чаще всего и есть 5МГц шириной, что делает спектральную эффективность крайне важной.
802.11ac также вводит стандартизированное формирование луча (у 802.11n оно было, но не было стандартизировано, что делало интероперабельность проблемой). Формирование луча, по существу, передает радиосигналы таким образом, что они направлены на конкретное устройство. Это может повысить общую пропускную способность, и сделать его более последовательным, а также снизить энергопотребление. Сформировать луч можно при помощи смарт-антенны, которая физически двигается в поиске устройства, или путем модуляции амплитуды и фазы сигналов, так что они деструктивно интерферируют друг с другом, оставляя узкий, не интерферирующий луч. 802.11n использует второй метод, который может быть применен и роутерами и мобильными устройствами. Наконец, 802.11ac, как и предыдущие версии 802.11, полностью обратно совместим с 802.11n и 802.11g, так что вы можете сегодня купить роутер 802.11ac, и он будет отлично работать с вашими устройствами с более старыми WiFi устройствами.
Диапазон 802.11ac
Теоретически, при частоте 5МГц, и использовании сформированного луча, 802.11ac должен обладать таким же, как у 802.11n, или еще лучшим диапазоном (бел лучеобразования). Диапазон 5МГц, благодаря меньшей проникающей способности, обладает не таким диапазоном, как 2.4ГГц (802.11b/g). Но это компромисс, на который мы вынуждены пойти: нам просто не хватит спектральной пропускной способности в массивно используемом диапазоне 2.4ГГц, чтобы допустить максимальную скорость 802.11ac, достигающую гигабитного уровня. Пока ваш роутер находится в идеальном расположении, или у вас их несколько, не стоит переживать. Как всегда, более важным фактором является передача мощности ваших устройств, и качество антенны.
Насколько быстр 802.11ac?
И наконец, вопрос, ответ на который хотят знать все: насколько быстр стандарт WiFi 802.11ac? Как обычно, есть два ответа: теоретически достижимая в лаборатории скорость, и практический предел скорости, которым вы, скорее всего, будете довольствоваться в домашних условиях реального мира, окруженные кучей подавляющих сигнал препятствий.
Теоретическая максимальная скорость 802.11ac - 8 каналов 160МГц 256-QAM, каждый из которых способен на 866.7Мбит/с, что дает нам 6.933Мб/с, или скромные 7Гбит/с. Скорость передачи 900 мегабайт в секунду - это быстрей, чем передача на SATA 3 диск. В реальном мире, благодаря засоренности канала, вы, скорее всего, не получите больше 2-3 160МГц каналов, потому максимальная скорость остановится где-то на 1.7-2.5Гбит/с. По сравнению с теоретической максимальной скоростью 802.11n в 600Мб/с.
Apple Airport Extreme на 802.11ac, разобранный самым производительным роутером iFixit сегодняшнего дня (апрель 2015), включает D-Link AC3200 Ultra Wi-Fi Router (DIR-890L/R), Linksys Smart Wi-Fi Router AC 1900 (WRT1900AC), и Trendnet AC1750 Dual-Band Wireless Router (TEW-812DRU), как сообщает сайт PCMag. C этими роутерами, вам определенно стоит ожидать впечатляющих скоростей от 802.11ac, но пока что не откусывайте свой Gigabit Ethernet кабель.
В тесте Anandtech 2013 года, они испытывали роутер WD MyNet AC1300 802.11ac (до трех потоков) в паре с рядом устройств на 802.11ac, которые поддерживали 1-2 потока. Самая быстрая скорость передачи была достигнута ноутбуком Intel 7260 с беспроводным адаптером 802.11ac, который использовал два потока для получения 364Мб/с на расстоянии всего 1.5м. На 6м и через стену, тот же ноутбук был самым быстрым, но максимальная скорость составила 140Мб/с. Зафиксированный предел скорости для Intel 7260 составил 867Мб/с (2 потока по 433Мб/с).
В ситуации, когда вам не нужна максимальная производительность и надежность проводной GigE, 802.11ac поистине привлекателен. Вместо того, чтобы загромождать свою гостиную Ethernet кабелем, проведенным к домашнему кинотеатру из ПК под телевизором, более разумно использовать 802.11ac, который обладает достаточной пропускной способностью, чтобы беспроводным сигналом высочайшей четкости передать контент вашему HTPC. Для всех, кроме особо требовательных случаев, 802.11ac является очень достойной заменой Ethernet.
Будущее 802.11ac
Стандарт 802.11ac будет становиться еще быстрее. Как мы упоминали ранее, теоретическая максимальная скорость 802.11ac составляет скромные 7Гбит/с, и пока мы не добьемся этого в реальном мире, не стоит удивляться отметке в 2Гбит/с в ближайшие несколько лет. При 2Гбит/с, вы получите скорость передачи 256Мб/с, и внезапно Ethernet будут использоваться все меньше и меньше, пока не исчезнут. Чтобы достичь таких скоростей, производители чипсетов и устройств должны будут выяснить, как реализовать четыре или больше каналов для 802.11ac, учитывая как программное обеспечение, так и аппаратное.
Мы представляем, как Broadcom, Qualcomm, MediaTek, Marvell и Intel уже делают уверенные шаги в обеспечении 4-8 каналов для 802.11ac, ради интеграции самых последних роутеров, точек доступа, и мобильных устройств. Но пока спецификация 802.11ac не будет завершена, вторая волна чипсетов и устройств вряд ли появится. Производителям устройств и чипсетов нужно будет сделать много работы, чтобы убедиться в том, что продвинутые технологии вроде лучеобразования, соответствуют требованиям стандарта, и являются полностью совместимыми с другими устройствами стандарта 802.11ac.
vido.com.ua
Как повысить скорость WiFi, выбрав правильный канал
Беспроводные сети прошли долгий путь за последние 15 лет. И даже сегодня неустойчивая скорость WiFi- является проблемой в некоторых ситуациях. На это может влиять очень много вещей – от настройки маршрутизатора до помех в доме и расстояния между устройствами. К счастью, почти всегда есть способ исправить низкую скорость передачи данных.
Если вы когда-либо возились с настройками вашего маршрутизатора, вы наверняка замечали слово «канал». Большинство маршрутизаторов имеют набор каналов, настроенных на авто-режим, но я уверен, что многие видели в этом списке дюжину каналов, и задумывались, для чего они, и какой из них быстрее. Что ж, оказывается, что некоторые каналы действительно быстрее, но это не значит, что нужно открывать настройки и менять их значения. Читайте дальше, чтобы узнать больше о каналах 802.11, интерференции и разнице между 2.4 ГГц и 5ГГц WiFi.
Каналы 1, 6 и 11 Прежде всего, давайте поговорим о 2.4 ГГц, так как почти все WiFi-установки используют этот диапазон. 802.11ac, который дебютировал в 2013 году, движется к принятию 5 ГГц, но благодаря обратной совместимости и маршрутизаторам dual-radio диапазон 2.4 ГГц будет основным еще длительное время.
Все версии Wi-Fi, вплоть до 802.11n (A, B, G, N) между частотами 2400 и 2500 МГц. Эти 100 МГц разделены на 14 каналов по 20 МГц каждый. Как вы уже наверное посчитали, 14 по 20 – это намного больше, чем 100 МГц, в следствии чего, каждый канал связан как минимум с двумя (а обычно 4) другими каналами (см. диаграмму выше). Как можно представить, использование перекрывающихся каналов не очень хорошо сказывается на работе устройств – это одна из основных причин плохой пропускной способности беспроводных сетей, К счастью, каналы 1, 6 и 11 расположены достаточно далеко друг от друга, так что они не пересекаются. На установке не являющейся MIMO (т.е. 802.11 a, b или g), вы всегда должны пытаться использовать канал 1, 6 или 11. Если вы используете 802.11n с каналами по 20 МГц, то также можно использовать 1, 6 и 11, если вы хотите использовать каналы по 40 МГц, то знайте, что радиоволны могут быть очень перегружены, если вы не живете в частном доме в малозаселенной местности.
Какие каналы использовать в застроенном районе? Если вы хотите добиться максимальной пропускной способности и минимальной интерференции, каналы 1, 6 и 11 являются лучшим выбором, но в зависимости от других беспроводных сетей в вашем районе, один из этих каналов может быть гораздо удобнее, чем другие. К примеру, если вы используете канал 1, а кто-то за стеной использует канал 2, ваша пропускная способность будет падать. В этой ситуации придется поменять канал на 11, чтоб полностью избежать помех, хотя 6 тоже подойдет. Может быть соблазнительно использовать другой канал, кроме 1, 6 и 11, но помните, что тогда вы будете причиной помех. В идеале лучше поговорить с соседями и настроить каждый маршрутизатор на каналы 1, 6 и 11. Имейте в виду, что внутренние стены могут очень ослаблять сигнал. Если между вами и соседом кирпичная стена, то вы, вероятно, оба можете использовать канал 1, не мешая друг другу. Но если это тонкая стенка, вы должны использовать разные каналы. Есть способы, которые помогут найти самый чистый канал, например Vistumbler, но зачастую удобнее переключаться между каналами 1, 6 и 11, пока не найдете самый чистый сигнал. Если у вас есть два ноутбука, вы можете скопировать файл между ними, чтобы проверить пропускную способность каждого канала.
Что насчет 5 Ггц? Самое лучшее в частоте 5 ГГц (802.11n и 802.11ac) это наличие гораздо большего количества свободного места на более высоких частотах, которые предлагают 23 неперекрывающихся канала по 20 Мгц. Стоит также отметить, что начиная с 802.11n беспроводные технологии становятся более продвинутыми, сравнивая с 802.11b и g. Если у вас есть современный маршрутизатор стандарта 802.11n, он, скорее всего, имеет способность выбирать правильный канал и менять выходную мощность для максимизации пропускной способности и минимизации помех. Если вы используете 5 ГГц, и ваши стены толщиной не с лист бумаги, то вы можете использовать каналы по 40, 80, и 160 МГц. В конце концов, так как все оборудование обновляется и движется в сторону 5ГГц, выбор правильного канала становится проблемой вчерашнего дня. Конечно, все еще бывают случаи, когда имеет смысл настроить выбор канала маршрутизатором, но, когда вы имеете дело с MIMO, прибор сам сделает свое дело.
vido.com.ua
Wi-Fi 2,4 ГГц против 5 ГГц
Wi-Fi- как много в этом звуке... Думаю все знают, что Wi-Fi это беспроводная локальная сеть. И казалось бы, что сложного может быть в Wi-Fi, все просто, но не тут то было достаточно, к примеру, почитать спецификацию роутера. Чего там только не написано- IEEE802.11n, IEEE802.11b, IEEE802.11g, Диапазон частот 2.4 ГГц, 5 ГГц. Что в этом разобраться необходимо иметь два высших образования в сфере IT. Но на самом деле все не так сложно как кажется, в этой статье я попытаюсь объяснить, что значат числа и цифры, которые сопровождают Wi-Fi устройства.
Итак начнем с стандартов IEEE (Institute of Electrical and Electronics Engineers)- международная некоммерческая ассоциация специалистов в области техники, мировой лидер в области разработки стандартов по радиоэлектронике и электротехнике. Главная цель IEEE- стандартизация в области IT. Так вот, что бы различать стандарты, после сокращения IEEE написаны цифры, которые соответствуют определенной группе стандартов, например:
- Ethernet — это стандарты группы IEEE 802.3
- WiFi — это стандарты группы IEEE 802.11
- WiMAx — это стандарты группы IEEE 802.16
Двигаемся дальше, что же означают буквы после IEEE 802.11. Эти буквы означают стандарт Wi-Fi сети.
Wireless b | 2,4 | 1999 | 11 |
Wireless a | 5 | 2001 | 54 |
Wireless g | 2,4 | 2003 | 54 |
Super G | 2,4 | 2005 | 108 |
Wireless N, 150Mbps | 2,4 | - | 150 |
Wireless N Speed | 2,4 | - | 270 |
Wireless N, 300Mbps | 2,4 | 2006 | 300 |
Wireless Dual Band N | 2,4 и 5 | 2009 | 300 |
Wireless N, 450Mbps | 2,4/ 2,4 и 5 | - | 450 |
Wireless ac | 5 | - | 1300 |
Из этой таблицы видно, что с каждым новым стандартом скорость Wi-Fi сети неуклонно растет. Если вы увидите на каком либо устройстве (роутере, ноутбуке и т.д.) надпись IEEE 802.11 b/g/n это означает, что устройство поддерживает три стандарта 802.11b, 802,11g, 802.11n (на момент написания статьи это самое популярное сочетания, поскольку стандарт 802.11a устарел и использует диапазон частот 5 Ггц, а 802.11ac еще не получил большой популярности).
Самое время пришло разобраться в частотных диапазонах в которых работают Wi-Fi сети, их два- 2,4 ГГц (точнее, полосу частот 2400МГц-2483,5МГц) и 5 ГГц (точнее диапазон 5,180-5,240ГГц и 5,745-5,825ГГц).
Большинство устройств работают на частоте 2,4 ГГц, это подразумевает- использование полосы 2400МГц-2483,5МГц с частотой шага 5МГц. эти полосы образуют каналы, для Росии их 13
Канал Нижняя частота Центральная частота Верхняя частота
1 2.401 2.412 2.4232 2.406 2.417 2.4283 2.411 2.422 2.4334 2.416 2.427 2.4385 2.421 2.432 2.4436 2.426 2.437 2.4487 2.431 2.442 2.4538 2.436 2.447 2.4589 2.441 2.452 2.46310 2.446 2.457 2.46811 2.451 2.462 2.47312 2.456 2.467 2.47813 2.461 2.472 2.483
При настройке роутера можно выбрать один из каналов или довериться выбору самого роутера и выбрать АВТО. Стоит заметить, что выбор канала ответственное дело, поскольку чем больше устройств (например соседских роутеров) работают на вашем канале, тем меньше будет скорость у всех кто использует этот канал. Для правильного выбора стоит воспользоваться одной из программ сканирования W-Fi сетей в вашем доме/ офисе, определить менее занятый канал и выбрать его при настройке Wi-Fi роутера. Более подробно как это сделать описано в статье Как выбрать/ изменить беспроводной канал на маршрутизаторе/ роутере.
Частотные каналы в спектральной полосе 5GHz:
Канал | Частота, ГГц | Канал | Частота, ГГц | Канал | Частота, ГГц | Канал | Частота, ГГц | |||||||
34 | 5,17 | 62 | 5,31 | 149 | 5,745 | 177 | 5,885 | |||||||
36 | 5,18 | 64 | 5,32 | 15 | 5,755 | 180 | 5,905 | |||||||
38 | 5,19 | 100 | 5,5 | 152 | 5,76 | |||||||||
40 | 5,2 | 104 | 5,52 | 153 | 5,765 | |||||||||
42 | 5,21 | 108 | 5,54 | 155 | 5,775 | |||||||||
44 | 5,22 | 112 | 5,56 | 157 | 5,785 | |||||||||
46 | 5,23 | 116 | 5,58 | 159 | 5,795 | |||||||||
48 | 5,24 | 120 | 5,6 | 160 | 5,8 | |||||||||
50 | 5,25 | 124 | 5,62 | 161 | 5,805 | |||||||||
52 | 5,26 | 128 | 5,64 | 163 | 5,815 | |||||||||
54 | 5,27 | 132 | 5,66 | 165 | 5,825 | |||||||||
56 | 5,28 | 136 | 5,68 | 167 | 5,835 | |||||||||
58 | 5,29 | 140 | 5,7 | 171 | 5,855 | |||||||||
60 | 5,3 | 147 | 5,735 | 173 | 5,865 |
1. 5150-5250 MHz36: 5180 MHz40: 5200 MHz44: 5220 MHz48: 5240 MHz (данный канал эффективен при условии задействования следующей полосы)
2. 5250-5350 MHz (уточняйте возможность использования данной полосы)52: 5260 MHz56: 5280 MHz60: 5300 MHz64: 5320 MHz
За счет более редкого использования и больших количеств каналов точки Wi-Fi, скорость работы Wi-Fi увеличивается. Но для использования 5ГГц необходимо что бы не только Wi-Fi источник (роутер) работал на этой частоте, но и само устройство (ноутбук, планшет, телефон, телевизор). Минус использования 5ГГц это дороговизна оборудования, в сравнении с устройствами работающими на частоте 2,4 ГГц и меньшая дальность действия в сравнении с частотой 2,4 ГГц.
Я очень надеюсь, моя статья помогла Вам! Просьба поделиться ссылкой с друзьями:
pk-help.com