7.3 Ускоренный графический порт (AGP). Agp разъем фото


AGP interface pinout and wiring @ old.pinouts.ru

The Accelerated Graphics Port (also called Advanced Graphics Port) is a high-speed point-to-point channel for attaching a single device (generally a graphics card) to a computers motherboard, primarily to assist in the acceleration of 3D computer graphics. Many classify AGP as a type of computer bus, but this is something of a misnomer since buses generally allow multiple devices to be connected, while AGP does not. AGP originated from Intel, and it was first built into a chipset for the Pentium II microprocessor. AGP cards generally slightly exceed PCI cards in length and can be recognized by a typical hook at the inner end of the connector, which does not exist on PCI cards. Nowdays AGP is almost replaced by PCI-Express.

AGP versions:

  • AGP 1.0: 3.3 volts signaling with speed multipliers 1x (267MB/s), 2x (533MB/s)
  • AGP 2.0: 1.5 volts signaling with speed multipliers 1x (267MB/s), 2x (533MB/s), 4x (1067MB/s)
  • AGP 3.0: 0.8 volts signaling with speed multipliers 4x (1067MB/s), 8x (2133MB/s)

In addition, in the world of workstations different AGP Pro cards exist with extra connectors which allow card to draw more power. In order to make life easier, the AGP standard defines some backward compatibilty. The AGP 1.0 specification requires that all implementations support the 1x speed multiplier at 3.3 volts. By default, when the AGP 1.0 machine powers up it selects the fastest speed multiplier supported by both the video card and the motherboard. If they both support 2x then they will run at 2x. Otherwise they run at 1x which is always implemented by all AGP 1.0 video cards and motherboards. The AGP 2.0 specification has a similar requirement. 2x and 1x support at 1.5 volts are required and 4x support is optional. The AGP 3.0 specification requires support for 8x. The 3.0 specification isn't as clear as the 1.0 and 2.0 specifications on the subject of requiring the lower multiplier but all AGP 3.0 almost all implementations support both 8x and 4x. As a result, you can completely ignore speed multipliers when you're checking for compatibility between an AGP video card and an AGP motherboard. If the video card and motherboard both support the same signaling voltage then there is always at least one common speed multiplier supported by both at that voltage. You only need to make sure that the video card and motherboard have at least one signaling voltage in common.

AGP cards and slots

Graphics Card Types Connector Type* Description
AGP 3.3V Card 3.3V slot Supports only 3.3V signaling. Available speeds 1x, 2x.
AGP 1.5V Card 1.5V slot Supports only 1.5V signaling. Available speeds 1x, 2x, 4x.
Universal AGP Card Double slotted Supports 3.3V and 1.5V signaling. Available speeds 1x, 2x at 3.3V and 1x, 2x, 4x at 1.5V.
AGP 3.0 Card 1.5V slot Supports only 0.8V signaling. Available speeds 4x, 8x.
Universal 1.5V AGP 3.0 Card 1.5V slot Supports 1.5V and 0.8V signaling. Available speeds 1x, 2x, 4x at 1.5V and 4x, 8x at 0.8V.
Universal AGP 3.0 Card Double slotted Supports AGP 3.3v, 1.5V, and 0.8V signaling. Available speeds 1x, 2x at 3.3V and 1x, 2x, 4x at 1.5V and 4x, 8x at 0.8V.

*Different slots connectors have different position of key

The AGP connectors on the motherboard are keyed to prevent insertion of AGP cards which would be damaged if plugged in. An AGP 3.3V motherboard connector can only accept AGP cards which have the 3.3V slot. If you try to insert a card without a 3.3V slot into an AGP 3.3V motherboard connector, the card will bump into the connector key and cannot be inserted. Likewise an AGP 1.5V motherboard connector can only accept AGP cards with the 1.5V slot. An AGP universal motherboard connector has no keys and therefore can accept any kind of AGP card. An AGP card with both voltage slots can be plugged into any kind of AGP motherboard connector. If you can plug an AGP card into an AGP motherboard connector, then neither the card nor the motherboard will be damaged (assuming they obey the AGP specifications).

AGP pinout

3.3 Volt Boards

Universal Boards

1.5 Volt Boards

 
Pin # Side A Side B Side A Side B Side A Side B
1 +12V OVRCNT# +12V OVRCNT# +12V OVRCNT#
2 TYPEDET# +5.0V TYPEDET# +5.0V TYPEDET# +5.0V
3 Reserved 5.0V Reserved 5.0V Reserved 5.0V
4 USB- USB+ USB- USB+ USB- USB+
5 Ground Ground Ground Ground Ground Ground
6 INTA# INTB# INTA# INTB# INTA# INTB#
7 RST# CLK RST# CLK RST# CLK
8 GNT# REQ# GNT# REQ# GNT# REQ#
9 VCC 3.3 VCC 3.3 VCC 3.3 VCC 3.3 VCC 3.3 VCC 3.3
10 ST1 ST0 ST1 ST0 ST1 ST0
11 Reserved ST2 Reserved ST2 Reserved ST2
12 PIPE# RBF# PIPE# RBF# PIPE# RBF#
13 Ground Ground Ground Ground Ground Ground
14 Reserved Reserved WBF# Reserved WBF# Reserved
15
SBA1
SBA0 SBA1 SBA0 SBA1 SBA0
16 VCC 3.3 VCC 3.3 VCC 3.3 VCC 3.3 VCC 3.3 VCC 3.3
17 SBA3 SBA2 SBA3 SBA2 SBA3 SBA2
18 Reserved SB_STB SB_STB# SB_STB SB_STB# SB_STB
19 Ground Ground Ground Ground Ground Ground
20 SBA5 SBA4 SBA5 SBA4 SBA5 SBA4
21 SBA7 SBA6 SBA7 SBA6 SBA7 SBA6
22 Key Key Reserved Reserved Reserved Reserved
23 Key Key GROUND GROUND GROUND GROUND
24 Key Key Reserved 3.3Vaux Reserved 3.3Vaux
25 Key Key Vcc 3.3 Vcc 3.3 Vcc 3.3 Vcc 3.3
26 AD30 AD31 AD30 AD31 AD30 AD31
27 AD28 AD29 AD28 AD29 AD28 AD29
28 VCC 3.3 VCC 3.3 VCC 3.3 VCC 3.3 VCC 3.3 VCC 3.3
29 AD26 AD27 AD26 AD27 AD26 AD27
30 AD24 AD25 AD24 AD25 AD24 AD25
31 Ground Ground Ground Ground Ground Ground
32 Reserved AD STB1 AD STB1# AD STB1 AD STB1# AD STB1
33 C/BE3# AD23 C/BE3# AD23 C/BE3# AD23
34 Vddq 3.3 Vddq 3.3 Vddq Vddq Vddq 1.5 Vddq 1.5
35 AD22 AD21 AD22 AD21 AD22 AD21
36 AD20 AD19 AD20 AD19 AD20 AD19
37 Ground Ground Ground Ground Ground Ground
38 AD18 AD17 AD18 AD17 AD18 AD17
39 AD16 C/BE2# AD16 C/BE2# AD16 C/BE2#
40 Vddq 3.3 Vddq 3.3 Vddq Vddq Vddq 1.5 Vddq 1.5
41 FRAME# IRDY# FRAME# IRDY# FRAME# IRDY#
42 Reserved 3.3Vaux Reserved 3.3Vaux KEY KEY
43 Ground Ground Ground Ground KEY KEY
44 Reserved Reserved Reserved Reserved KEY KEY
45 VCC 3.3 VCC 3.3 VCC 3.3 VCC 3.3 KEY KEY
46 TRDY# DEVSEL# TRDY# DEVSEL# TRDY# DEVSEL#
47 STOP# Vddq 3.3 STOP#
Vddq
STOP# Vddq 1.5
48 PME# PERR# PME# PERR# PME# PERR#
49 Ground Ground Ground Ground Ground Ground
50 PAR SERR# PAR SERR# PAR SERR#
51 AD15 C/BE1# AD15 C/BE1# AD15 C/BE1#
52 Vddq 3.3 Vddq 3.3 Vddq Vddq Vddq 1.5 Vddq 1.5
53 AD13 AD14 AD13 AD14 AD13 AD14
54 AD11 AD12 AD11 AD12 AD11 AD12
55 Ground Ground Ground Ground Ground Ground
56 AD9 AD10 AD9 AD10 AD9 AD10
57 C/BE0# AD8 C/BE0# AD8 C/BE0# AD8
58 Vddq 3.3 Vddq 3.3 Vddq Vddq Vddq 1.5 Vddq 1.5
59 Reserved AD STB0 Reserved AD STB0# Reserved AD STB0#
60 AD6 AD7 AD6 AD7 AD6 AD7
61 Ground Ground Ground Ground Ground Ground
A62 AD4 AD5 AD4 AD5 AD4 AD5
63 AD2 AD3 AD2 AD3 AD2 AD3
64 Vddq 3.3 Vddq 3.3 Vddq Vddq Vddq 1.5 Vddq 1.5
65 AD0 AD1 AD0 AD1 AD0 AD1
66 Reserved Reserved Vrefgc Vrefcg Vrefgc Vrefcg

The AGP bus is 32 bits wide, just the same as PCI is, but instead of running at half the system (memory) bus speed the way PCI does, it runs at full bus speed. This means that on a standard Pentium II motherboard AGP runs at 66 MHz instead of the PCI buss 33 MHz. This of course immediately doubles the bandwidth of the port; instead of the limit of 127.2 MB/s as with PCI, AGP in its lowest speed mode has a bandwidth of 254.3 MB/s. The AGP specification is in fact based on the PCI 2.1 specification, which includes a high-bandwidth 66 MHz speed.

 

old.pinouts.ru

Терминология - AGP - AlterBit.ru

AGP (Accelerated Graphics Port) - высокоскоростной канал типа «точка-точка», предназначен для подключения видеокарты к материнской плате компьютера. Разъем создан, прежде всего, для ускорения обработки компьютерной 3D-графики.

С 2004 года фокус пользовательских предпочтений сместился постепенно с AGP на PCI Express (PCIe). К середине 2009 года PCIe-карты доминировали на рынке. Однако, несмотря на такое повальное смещение спроса, AGP-карты все еще существуют на современном рынке, но поддержка OEM-драйверов для них - минимальна. Вообще, следует подробнее рассмотреть различия и преимущества разъема AGP, в сравнении с PCI.

Сравнения AGP и PCI

Поскольку компьютеры со временем становились все более и более графически-ориентированы, последующие поколения графических адаптеров стали расширять границы PCI, шины с общей пропускной способностью. Это привело к скорому развитию AGP - шины, которая ориентирована на графические адаптеры.

Основным преимуществом AGP перед PCI является то, что этот разъем обеспечивает выделенный канал между слотом и процессором, что же касается шины PCI, то она осуществляет обмен, расшаривает данные. В дополнение к отсутствию конкуренции для шины AGP, директивное подключение и направленный обмен данными позволяет  добиться более высоких показателей тактовой частоты работы шины. AGP также использует «боковую» адресацию, это означает, что адреса и шины данных распределяются таким образом, что нет необходимости в чтении всего пакета для получения адресной информации. Это достигается с помощью добавления дополнительных 8-битных шин, которые позволяют графическим контроллерам выдавать новые AGP-запросы и команды, причем в то же самое время, пока другие AGP-данные направляются через главную 32-адрессную линию (AD). Это приводит к повышению общей пропускной способности AGP-шины.

Более того, для загрузки текстур, графическая карта PCI должна скопировать информацию из системной памяти (RAM) в буфер обмена карты. Карты AGP же, в свою очередь, способны осуществлять чтение текстур напрямую из оперативной памяти, используя таблицу графических адресов, которая пропорционально распределяет оперативную память по мере необходимости для хранения текстур, что позволяет видеокарте обращаться к этим данным напрямую. Максимальный объем системной памяти, доступной для AGP, определяется апертурой AGP.     

История развития AGP

Впервые слот AGP появился на x86-совместимых системных платах, построенных с использованием Socket 7 Intel P5 Pentium и Slot 1 P6 Pentium II процессоров. Компания Intel представила AGP-поддержку в чипсете i440LX Slot 1, 26 августа, 1997 года. Немногим после этого выхода, на рынок хлынул целый поток подобных продуктов и от других проиводителей.

Первыми чипсетами Socket 7 с поддержкой AGP были: VIA Apollo VP3, SiS 5591/5592 и ALI Aladdin V. Что касается компании Intel, то они никогда не выпускали Socket 7 чипсет с поддержкой AGP. Компания FIC продемонстировала рынку первую Socket 7 AGP систему в ноябре 1997 года. То была FIC PA-2012, построенная на платформе чипсета VIA Apollo VP3, новая технология весьма скоро появилась на рынке, сразу после выхода EPoX P55-VP3, также построенного на базе VIA VP3 чипсете.  

Наиболее яркими представителями ранних видео-чипсетов с поддержкой AGP являются: Rendition Vérité V2200, 3dfx Voodoo Banshee, Nvidia RIVA 128, 3Dlabs PERMEDIA 2, Intel i740, ATI Rage series, Matrox Millennium II, и S3 ViRGE GX/2. Некоторые ранние AGP-платы использовали графические процессоры, построенные на базе PCI, и легко могли трансформироваться в AGP. Это привело к тому, что некоторые параметры перекочевали в PCI из новой шины. Например, была улучшена пропускная способность шины - до 66 MHz. Примерами таких карт являются Voodoo Banshee, Vérité V2200, Millennium II, и S3 ViRGE GX/2. Интелловский i740 был специально разработан для использования новых функций AGP, причем, сразу целым сетом. По факту, он был создан целенаправлено для загрузки текстур по шине AGP, поскольку PCI имела множество сложностей в загрузке таких текстур. Оперативная память должна была эмулировать память AGP. 

Microsoft и AGP

Компания Microsoft впервые ввела поддержку AGP в своей системе Windows 95 OEM Service Release 2 (OSR2 version 1111 или 950B) через USB-приложение к OSR2 патчу. После применения патча система получила версию 4.00.950 B. Первой системой типа Windows NT, получившей поддержку AGP, стала версия Windows NT 4.0 Service Pack 3, представленная в 1997 году.

Поддержка Linux для AGP, расширяющая быструю передачу данных, впервые была внедрена в систему в 1999 году, вместе с реализацией AGPgart модуля ядра. 

Версии AGP

Компания Intel выпустила AGP-спецификацию в версии 1.0 в 1997 году. Она включала в себя 1× и 2× скорости. Спецификация 2.0 дала рождение AGP 4×, а версия 3.0 - 8×. Доступные версии включают в себя:

AGP и PCI: 32-битные шины, работающие на 66 и 33 MHz, соответственно

Спецификация

Скорость

Подкачка

Норма (MB/s)

Частота (MHz)

Напряжение (V)

PCI

-

единичная

133

33

3.3

AGP 1.0

единичная

266

66

3.3

AGP 1.0

двоичная

533

66

3.3

AGP 2.0

четверичная

1066

66

1.5

AGP 3.0

восьмиричная

2133

66

0.8

AGP 3.5 *

восьмиричная

2133

66

0.8

*AGP версии 3.5 были обнародованы компанией Microsoft публично.

Порт Accelerated Graphics Port (UAGP), определяющий обязательность поддержки экстра регистров был как-то внедрен как опциональный элемент в версии AGP 3.0. Обновленные регистры включали в себя PCISTS, CAPPTR, NCAPID, AGPSTAT, AGPCMD, NISTAT, NICMD. Новые требуемые регистры должны включать также и APBASELO, APBASEHI, AGPCTRL, APSIZE, NEPG, GARTLO, GARTHI. Существует множество различных вариаций физических интерфейсов и коннекторов.  

Официальные расширения

AGP Pro

Это официальное расширение, созданное специально для карт, требующих бОльшую электрическую мощность. Это более длинный слот, с дополнительными контактами, специально предназначенными для этой цели. Карты формата AGP Pro, как правило, являются картами класса «рабочая станция», используемыми для ускорения и более оперативной работы больших профессиональных графических приложений, применяющихся в проектировании, 3D-моделировании и дизайне. 

64-битные AGP

64-битный канал был однажды предложен в качестве дополнительного стандарта AGP 3.0, в проектной документации. Однако, в своей окончательной версии стандарт так и не получил дальнейшей реализации и широкого распространения. 

Данный стандарт позволяет добиться 64-битной транзакции для AGP8× - в процессах чтении и записи. Также доступны 32-битные процессы на PCI-платформе.

Неофициальные расширения

Огромное число нестандартных вариаций AGP-интерфейса было выпущено самими производителями оборудования.

Внутренний AGP-интерфейс

Ultra-AGP, Ultra-AGPII

Стандарт внутреннего AGP-интерфейса, использовавшийся производителем SiS для мостов контроллеров с интегрированной графикой. Оригинальная версия поддерживает такую же пропускную способность, что и AGP 8×, в то время, как Ultra-AGPII имеет масимальный показатель пропускной способности в 3.2ГБ/с.

AGP порты, основанные на PCI

AGP Express

Ненастоящий и неполноценный AGP-интерфейс, но позволяет AGP-карте быть подключенной посредством шины PCI Express, расположенной на материнской плате. Данная технология активно использовалась и применялась на материнских платах компании ECS. Она предназначалась для того, чтобы использовать существующую AGP-карту в новых материнских платах, взамен устаревающей PCIe-карте. 

По своей сути, слот AGP Express - это тот же самый PCI-слот, но только с удвоенными показателями электроэнергии, и с несколько другим разъемом. Он допускает обратную совместимость с AGP-картами, но не обеспечивает полную программную поддержку (поэтому иногда случается так, что некоторые AGP-карты не работают на слоте AGP Express) и полную производительность карты. PCI-слот, по своей сути, обеспечивает меньший уровень пропускной способности. Но в любом случае, AGP все равно быстрее.

AGI

AGI  - ASRock Graphics Interface, является частным вариантом общераспространенного стандарта Accelerated Graphics Port (AGP). Его основной целью является обеспечение AGP-поддержкой фирменных материнских плат компании ASrock. Дело в том, что фирменные чипсеты компании не поддерживают AGP-формат, поэтому возникла необходимость в «домашней» адаптации имеющихся технологий под общепринятые. Тем не менее, имеющиеся у ASrock технологии не имеют полной совместимости с AGP - некоторые известные и довольно распространенные чипсеты видео-карт не поддерживаются их внутренним оборудованием.

AGX

Advanced Graphics eXtended (AGX) - фирменная технология компании EpoX, представляет собой очередную вариацию AGP-шины, в фирменном исполнении. AGX обладает всеми теми же преимуществами и недостатками, что и AGI. Инструкция по эксплуатации не рекомендует использовать AGP 8× ATI карты с AGX - плохая совместимость. 

XGP

Xtreme Graphics Port - фирменный интерфейс компании Biostar, также является аналогом AGP, с такими же преимуществами и недостатками, как AGI и AGX. 

AGP-порты, построенные на PCIe платформе

AGR

AGR - Advanced Graphics Riser. Это вариация AGP-порта, используемая на некоторых «PCIe-материнках». Технология разработана компанией MSI, и предлагает совместимость, хотя и ограниченную, с AGP-технологией. 

AGR - это, по сути, модифицированный PCIe-порт, обеспечивающий производительность, близкую к показателям AGP 4×/8×. Но, опять-таки, как и все разъемы-аналоги, данный формат не поддерживает все без исключения AGP-карты. Производитель опубликовал на своем официальном сайте перечень карт, поддерживаемых их форматом. 

Совместимость

AGP-карты обладают неплохой прямой и обратной совместимостью, в доступных пределах. Единственное что, карты с напряжением 1.5 V не будут работать на слотах с показателем 3.3 V, и наоборот. Хотя, универсальные карты (с пометкой «Universal» на самой плате), согласно паспортным заявлениям, впишутся в любой тип слота. Также существуют беcключевые слоты «Universal», которые могут принять любой тип карт. Когда карта типа AGP Universal вставляется в соответствующий разъем AGP Universal, только 1.5 V-ая часть карты используется. Некоторые карты, например, Nvidia's GeForce 6 series (заисключением 6200) или ATI's Radeon X800 series, оснащены специальными ключами, которые допускают использование только на 1.5 V-ых слотах - с целью предотвращения их установки на более старые материнские платы, не поддерживающие 1,5-Вольтовый режим.

Некоторые их современных видео-карт имеют поддержку 3.3 V. Например, Nvidia GeForce FX series (FX 5200, FX 5500, FX 5700, некоторые FX 5800, FX 5900 и кое-какие версии FX 5950), Geforce 6 Series (6200, 6600/6600 LE/6600 GT) и ATI Radeon 9500/9700/9800 (R350) (но не 9600/9800(R360)). Некоторые Geforce 6200-карты и Geforce 6600 -карты работают на AGP 1.0 (3.3v) слотах.

AGP Pro-карты не вписываются в стандартные слоты, но стандартные AGP-карты будут полноценно функционировать на Pro-слотах. Материнские платы, оснащенные слотами Universal AGP Pro, принимают карты как с 1.5 V-параметрами, так и 3.3 V-ые, причем, как в AGP Pro, так и в сандартной конфигурации AGP, Universal AGP или Universal AGP Pro. 

Некоторые карты имеют неправильные двойные вырезы, некоторые материнские платы - некорретно открытые слоты, позволяющие вставить в них карту, которую сам слот, по паспорту, не поддерживает. Это в нередких случаях, приводит к выходу из строя установленной карты, либо самой материнской платы. Некоторые, более ранние видео-карты формата 3.3 V, имеют ключ в 1.5 V.

Кроме того, существуют некоторые частные системы, несовместимые со стандартом AGP. Например, компьютеры Apple Power Macintosh с их разъемом Apple Display Connector (ADC), имеют дополнительный разъем, который обеспечивает питание подключенного к нему дисплея. Некоторые же карты разработаны для работы на специфицческой CPU-архитектуре (PC и Apple), которая может быть несовместима с другим прошивками.

Потребляемая мощность

Фактическое питание слота AGP зависит от используемой карты. Максимальный потребляемый ток приведен в спецификациях для различных версий. Например, если считать по всем показателям по максимуму, то в случае с AGP 3.0 максимальный ток будет составлять 48.25 Вт. Эта цифра может быть указана для обозначения источника питания, вполне консервативно. Однако, на практике такая карта вряд ли когда-либо выдаст показатель, превышающий 40 Вт от слота. При этом, многие карты используют и того меньше. Слот AGP Pro, как мы уже говорили, обеспечивает дополнительную мощность, до 110 W. Многие AGP-карты оснащены дополнительным разъемом питания, чтобы обеспечить больше энергии, чем это может сделать слот. 

Наследие и современность

К 2010 году некоторые новые маетеринские платы оснащались AGP-слотами. При этом, никаких новых чипсетов на рынке по AGP-формату не было выпущено, материнские платы менялись, слот оставался прежним. Старые чипсеты в новых материнских платах поддерживали старую спецификацию AGP. 

Графические процессоры на тот период времени использовали платформу PCI-Express, причем общего назначения (а не целенаправленно заточенные под графику). Это стандарт, поддерживающий высокую скорость передачи данных и полный дуплекс. Для создания AGP-совместимой видео-карты те чипы требовали дополнительного мостового чипа типа «PCIe-to-AGP», чтобы конвертировать сигналы PCIe в плоскость AGP, и наоборот. Это влекло за собой повышение стоимости, поскольку возникала необходимость внедрения дополнительного чипа-моста, а для отдельных AGP-устройств - еще и специальной системной платы.

Однако, тем не менее, различные производители продолжают выпускать графические карты формата AGP для все более и более сокращающейся аудитории потребителей. Первые карты, оснащеные таким вот мостом, выпущены двумя производителями: eForce 6600 и ATI Radeon X800 XL. Эти устройства были представлены в 2004-2005 годах. В 2009 году AGP карты от Nvidia выделились в новую ветку: GeForce 7 Series. В 2011 году DirectX 10-совмесимые AGP карты от AMD (Club 3D, HIS, Sapphire, Jaton, Visiontek, Diamond, etc.) включали такие модели, как: Radeon HD 2400, 3450, 3650, 4350, 4650, и 4670. AGP-серия HD 5000, упомянутая в некоторых программных обеспечениях, на самом деле, никогда не была доступна. Существовало множество проблем с AMD Catalyst 11.2 - 11.6 AGP-драйверами, особенно под Windows 7, с серией HD 4000, использующей версию драйвера 10.12 или 11.1, рекомендуемую источниками, близкими к производителю. Некоторые из перечисленных выше производителей предлагают более старые версии AGP-драйверов для полноценной и стабильной работы устройств. Так, потребительский фокус все более смещается в сторону PCIe-платформы.

www.alterbit.ru

7.3 Ускоренный графический порт (AGP) » СтудИзба

7.3. Ускоренный графический порт (AGP)

Шина AGP (Accelerated Graphic Port) Ускоренный графический порт. Ускоренный графический порт - это расширение шины PCI, чье назначение -- обработка больших массивов данных 3D графики.

Разработчики PC имели ранее возможность использовать системную память для хранения информации о текстурах и z-буфера, но ограничением в этом подходе была передача такой информации через шину PCI. Производительность графической подсистемы и системной памяти ограничиваются физическими характеристиками шины PCI. Кроме того, ширина полосы пропускания PCI, или ее емкость, не достаточна для обработки графики в режиме реального времени. Чтобы решить эти проблемы, Intel разработала AGP.

Если определить кратко, что такое AGP, то это - прямое соединение между графической подсистемой и системной памятью. Это решение позволяет обеспечить значительно лучшие показатели передачи данных, чем при передаче через шину PCI, и явно разрабатывалось, чтобы удовлетворить требованиям вывода 3D графики в режиме реального времени. AGP позволит более эффективно использовать память страничного буфера (frame buffer), тем самым увеличивая производительность 2D графики также, как увеличивая скорость прохождения потока данных 3D графики через систему.

Определением AGP, как вида прямого соединения между графической подсистемой и системной памятью, является соединение point-to-point. В действительности, AGP соединяет графическую подсистему с блоком управления системной памятью, разделяя этот доступ к памяти с центральным процессором компьютера (CPU).

Через AGP можно подключить только один тип устройств - это графическая плата. Графические системы, встроенные в материнскую плату и использующие AGP, не могут быть улучшены.

Итак, магистральный интерфейс AGP. Называть его шиной не совсем верно — на несколько слотов расширения он не был рассчитан изначально, и, хотя в спецификации AGP 3.0 есть упоминание о возможности подобных конфигураций, в железе ничего подобного так и не появилось. Этот интерфейс был разработан фирмой Intel для подключения видеокарт. Предполагался почти полный отказ от локальной видеопамяти, и использование вместо нее системной. Первым шагом в этом направлении стала видеокарта Intel 740 — на ней устанавливался относительно небольшой объем памяти, использовавшийся под буфер кадра и Z-буфер, а все текстуры хранились только в системной памяти. Но путь оказался тупиковым — относительно медленная системная память не смогла соперничать с широкими и быстрыми шинами памяти видеокарт — отказ от модулей расширения позволил реализовать 128- и 256-битный доступ, а существенно более мягкие требования к отказоустойчивости отдельных ячеек памяти позволили поднять частоту даже на тех же самых микросхемах. Все дело в том, что изменение содержимого одной-единственной ячейки видеопамяти на картинку сильно повлиять не способно — изменившую цвет на одном-единственном кадре точку заметить практически невозможно, тогда как в случае системной памяти такой сбой будет иметь куда более печальные последствия. Причем повысить частоты при таких требованиях к отказоустойчивости можно очень сильно. Текстуры соврменные карты хранят в собственной памяти, используя возможности AGP только в случае ее нехватки, а Intel 740 так и остался единственным в своем роде ускорителем, став позже основой встроенного в многие чипсеты от Intel графического ядра I752 — в этом применении его особенности пришлись как раз кстати.

AGP 1.0

За основу интерфейса AGP 1.0 была взята шина PCI 2.1, а точнее, ее вариант PCI 32/66 — 32х разрядная шина с частотой работы 66MHz. В стандарте AGP 3.0 предусмотрено расширение разрядности до 64х бит при сохранении обратной совместимости, но пока такие конфигурации не реализованы. Электрически (но не по слоту и разводке) AGP 1.0 остался обратно совместим с PCI, но получил и кое-какие расширения:

1.            Очередь запросов. На AGP, в отличие от PCI, для передачи следующего адреса дожидаться окончания текущей передачи вовсе не обязательно — можно сделать сразу несколько запросов на чтение (запись), а затем последовательно считать (передать) данные.

2.            Частичное демультиплексирование шин адреса и данных. Реализация весьма оригинальна — в дополнение к стандартной 32 х битной мультиплексированной шине (AD) имеется 8 ми разрядная “боковая” шина адреса (SBA). Алгоритм таков: при пустой очереди запросов несколько первых передач адреса производится станадартно, по мультиплексированной шине AD, а после того, как по ней пойдут запрошенные данные, передачи следующих адресов в очередь будут производиться по шине SBA.

3.            Режим DDR для линий данных. Уже в стандарте AGP 1.0 был реализован режим 2 х — передачи по линиям AD и SBA с удвоенной частотой, по фронту и спаду синхросигнала. Вопреки распостраненному заблуждению, материнских плат с поддержкой только режима 1x просто не существует — в первом чипсете с поддержкой AGP, Intel 440LX, режим 2 х уже был реализован. Этот вариант AGP довольно быстро стал общим стандартом, VIA, SIS и ALi выпустили собственные чипсеты с поддержкой AGP.

AGP 2.0

Довольно быстро развитие системной памяти привело к тому, что ее пропускная способность превысила пропускную способность AGP 1.0 даже в режиме 2 х. Естественно, был разработан новый стандарт — AGP 2.0. Кроме мелких усовершенствованиях режима Bus Master, оставшегося от PCI, было одно-единственное, но глобальное изменение спецификации - для реализации передач QDR (4 передачи за такт) сигнальные уровни интерфейса были снижены до 1.5в вместо 3.3в. в AGP 1.0. Из-за того, что при таких частотах емкость проводников начинает играть уже существенное значение, понижение уровня логической “1” способно уменьшить потребление выходных каскадов и повысить быстродействие и стабильность. Вопреки распостраненным заблуждениям, напряжение линий, по которым подается питание для чипа и памяти (или их стабилизаторов) не изменилось — все 3 линии, VDD 3.3, VDD 5 и VDD 12 так и остались в разъеме. С 3,3в до 1,5в изменилось только VDDQ — напряжение питания для выходных каскадов чипа. Мало кто знает, но подобное решение уходит корнями еще в спецификацию PCI — изначально эта шина имела уровень логической “1” 5.0в, а в спецификации PCI 2.1 для реализации частоты 66MHz было предусмотрено его снижение до 3.3в. Проблем не возникло, во-первых, потому, что варианты PCI 32/66 и 64/66 широкого распостранения до сих пор не получили, присутствуя только в серверных решениях, а во-вторых, из-за того, что сигнальные уровни шины однозначно задаются ключами слота PCI:

Сверху — 66MHz слот, снизу — 33MHz.

Для совместимости с AGP 1.0 новых материнских плат и видеокарт были предприняты следующие действия:

1.      Первый уровень совместимости — ключи разъемов:

 

Карта и разъем AGP 1.0. Сигнальные уровни — 3.3V.

 

 

Карта и разъем AGP 1.0/2.0 (Универсальные). Сигнальные уровни настраиваются, 3.3V или 1.5V.

 

 

Карта и разъем AGP 2.0. Сигнальные уровни — 1.5V.

 

 

AGP Pro — не отдельный стандарт, а просто обратно совместимый слот с дополнительными цепями питания.

Соответственно, несовместимую карту в материнскую плату воткнуть не получится. К сожалению, иногда конфигурация ключей карты или слота не соответствует действительности (см. ниже). Если же карта или материнская плата поддерживают несколько сигнальных уровней, то

2.      Сигнальные уровни задаются видеокартой, линией TYPEDET# — низкий уровень на ней включает режим 1.5-вольтовых сигнальных уровней.

3.      В зависимости от этого сигнала материнской платой выставляется напряжение VDDQ

4.      В зависимости от поданного VDDQ видеокарта устанавливает свои сигнальные уровни.

Пока чипсеты поддерживали режимы AGP 1.0, все было прекрасно. Но после выпуска Intel'ом чипсетов серии 845xx, не поддерживавших сигнальные уровни 3.3в, выяснилось, что не все так гладко, как казалось...

Первой, и грубейшей ошибкой производителей была установка на эти платы универсальных слотов, вместо требуемых спецификацией слотов с ключем “1.5в Only”. Казалось бы — ничего страшного, VDDQ-то все равно 1.5в, карта стандарта 1.0 просто не запустится, но, как выяснилось, карты стандарта 1.0 даже при VDDQ 1.5в все равно выдавали 3.3в на входы чипсета, рассчитанные на 1.5в... Естественно, несчастный северный мост не переносил такого издевательства, и горел напрочь, после чего плату можно было смело выкидывать — оборудование для пайки BGA и запасные мосты были в наличии у очень немногих фирм. К счастью, урок из этого извлекли достаточно быстро, и ключи на слотах появились. Некоторые карты, не смотря на то, что имели универсальный разъем, с AGP 4x были или совместимы частично, или несовместимы вообще. В лучшем случае карты просто не запускались или работали нестабильно, в худьшем — тупо врубали трехвольтовые уровни, естественно, с последующим летальным исходом для северного моста. Встречались также, например, карты, на которых сигнальные уровни задавались джампером. Естественно, по умолчанию он стоял в положении “3.3в”... К счастью, сигнал TYPEDET# на таких картах, как правило, выдает корректную информацию, так что некоторые производители, например, ASUStek, сделали на этом принципе схему защиты — при высоком уровне TYPEDET# плата не стартует. Понять, какие карты можно ставить на эти чипсеты, а какие нет можно из приведенной ниже таблицы. Для установки на эти чипсеты (а также на все последующие с поддержкой AGP 8x) карта должна поддерживать AGP 2.0:

Таблица поддержки стандартов AGP для видеокарт:

 

Производитель

Чип

AGP 1.0

AGP 2.0

AGP 3.0

ATI

Rage II

PCI(*)

-

-

ATI

Rage PRO

+

-

-

ATI

Rage 128

+

-

-

ATI

Rage 128 PRO

+

+(1)

-

ATI

RADEON (7200)

+

+

-

ATI

RADEON VE (7000)

+

+

-

ATI

RADEON 7500

+

+

-

ATI

RADEON 8500

+

+

-

ATI

RADEON 9000/PRO

+

+

-

ATI

RADEON 9200/PRO

+

+

+

ATI

RADEON 9500/PRO

+

+

+

ATI

RADEON 9600/PRO

-(2)

+

+

ATI

RADEON 9700/PRO

+

+

+

ATI

RADEON 9800/PRO

+

+

+

NVIDIA

Riva 128/ZX

+

-

-

NVIDIA

TNT

+

-

-

NVIDIA

TNT 2

+

+(3)

-

NVIDIA

GeForce

+

+

-

NVIDIA

GeForce 2/MX

+

+

-

NVIDIA

GeForce 3

+

+

-

NVIDIA

GeForce 4 MX

+

+

-

NVIDIA

GeForce 4 MX 8x

+

+

+

NVIDIA

GeForce 4 Ti

+

+

-

NVIDIA

GeForce 4 Ti 8x

+

+

+

NVIDIA

GeForce FX 5200/Ultra

+

+

+

NVIDIA

GeForce FX 5600/Ultra

+

+

+

NVIDIA

GeForce FX 5800/Ultra

+

+

+

NVIDIA

GeForce FX 5900/Ultra

+

+

+

Matrox

Millenium II

+

-

-

Matrox

G100

+

-

-

Matrox

G200

+

-

-

Matrox

G400

+

+(4)

-

Matrox

G450

+

+

-

Matrox

G550

+

+

-

Matrox

Parhelia

+

+

-(5)

Intel

740

+

-

-

S3

Virge

PCI(*)

-

-

S3

Trio 3D

+

-

-

S3

Savage 4

+

+

-

S3

Savage 2000

+

+

-

3DFX

Voodoo Banshee

PCI(*)

-

-

3DFX

Voodoo 3

PCI(*)

-

-

3DFX

VSA-based cards

+

+

-

#9

Revolution 3D

PCI(*)

-

-

#9

Revolution IV

+

-

-

SIS

315

+

+

-

SIS

Xabre

+

+

+(6)

PowerVR

Kyro

+

+

-

PowerVR

Kyro II/SE

+

+

-

(*) Карта вставляется в слот AGP, но использует его только как быструю PCI, без расширенных возможностей, описанных выше.

(1) У двухчиповых карт Rage MAXX проблемы с реализацией AGP 2.0.

(2) Возможно, поддержка AGP 1.0 осталась, а ключ в разъеме убран из-за большого потребления карты.

(3) На некоторых картах сигнальные уровни задаются джампером. Модификация TNT 2 Vanta LT не поддерживает AGP 2.0, но большинство карт на ней имеет универсальный разъем.

(4) У ранних ревизий карт проблемы с реализацией AGP 2.0.

(5) Заявлено — 3.0, реально — 2.0.

(6) У так и не вышедшего Xabre 80 — только 2.0.

AGP 3.0

По стандарту от Intel, и карта, и материнская плата при наличии поддержки AGP 8x поддерживать режимы с уровнями 3.3в не должна (это совсем не означает отсутствия поддержки режима 1x! Еще в стандарте AGP 2.0 были определены режимы 1x/1.5в и 2x/1.5в).У AGP 2.0 настала пора уйти в отставку — его пропускной способности опять перестало хватать. В новом стандарте 3.0 уровень логической “1” в очередной раз был изменен — уменьшен до 0.8в для режима 8x. Опорная частота интерфейса так и не изменилась, просто был введен режим ODR — передача по линиям AD и SBA с частотой, в 8 раз превышающей опорную. Естественно, добавили две новых линии — GC_AGP8X_DET# и MB_AGP8X_DET# — соответственно, определяющие поддержку AGP 3.0 у видеокарты и материнской платы. Разъем остался тем же самым — AGP 4X/1.5в Only (ох, зря, не наступили бы они опять на те же грабли при отказе от поддержки 1.5в сигнальных уровней), защита обеспечивается линией GC_AGP8X_DET# — при ее высоком уровне материнская плата с поддержкой только AGP 8x стартовать не должна. Почти все современные видеокарты с поддержкой AGP 8x имеют и поддержку материнских плат стандарта AGP 1.0 (единственное исключение — RADEON 9600). Другое дело, что совместимость по сигнальным уровням — необходимое, а не достаточное условие работоспособности. Например, старые блоки питания чего-нибудь типа RADEON 9700 просто, как правило, не выдерживают. Но примеры работающих конфигураций есть, так что при желании любую карту, даже RADEON 9800 PRO, можно поставить на Intel 440BX, например. Но имеет ли смысл?

Таблица поддержки стандартов AGP для чипсетов:

Производитель

Чипсет

AGP 1.0

AGP 2.0

AGP 3.0

Intel

440LX (1)

+

-

-

Intel

440BX (1)

+

-

-

Intel

815xx

+

+

-

Intel

820

+

+

-

Intel

845xx

-

+

-

Intel

850x

-

+

-

Intel

865x

-

+

+

Intel

875x

-

+

+

Intel

7205

-

+

+

VIA

VP3/MVP3 (2)

+

-

-

VIA

691(Apollo PRO)

+

-

-

VIA

693x(Apollo PRO +/133)

+

-

-

VIA

694x(Apollo PRO 133A/133T) (3)

+

+

-

VIA

Apollo 266x

+

+

-

VIA

KT133x

+

+

-

VIA

KT266x

+

+

-

VIA

KT333

+

+

-

VIA

KT333CF

-

+

-

VIA

KT400x

+

+

+

VIA

KT600

+

+

+

VIA

P4X266x

+

+

-

VIA

P4X400

-

+

+

AMD

750

+

-

-

AMD

760

+

+

-

ALI

Aladdin V (4)

+

-

-

ALI

Aladdin Pro II

+

-

-

ALI

Aladdin Pro 5T

+

+

-

ALI

M1649

+

+

-

ALI

MAGiK 1

+

+

-

ALI

ALADDiN-P4 (M1671)

+

+

-

SIS

635

+

+

-

SIS

735

+

+

-

SIS

745

+

+

-

SIS

746/FX

-

+

+

SIS

645/DX

+

+

-

SIS

648

-

+

+

SIS

650

+

+

-

SIS

655

-

+

+

NVIDIA

Nforce

-

+

-

NVIDIA

Nforce II

-

+

+

ATI

A3

+

+

-

ATI

A4

+

+

-

ATI

IGP9100

-

+

+

(1) Это самые первые чипсеты с поддержкой AGP. Возможность стабильной работы новых карт целиком и полностью зависит от конкрентых материнских плат.

(2) Первый чипсет с AGP не от Intel. Как ни странно, серьезных аппаратных проблем не имел (не считая конкретные реализации AGP на некоторых материнских платах, но это уже не вина VIA). Крайне рекомендуется обновить BIOS перед установкой новых карт.

(3) У ранних плат, возможно, для стабильной работы режима 4x потребуется вручную подобрать AGP Driving Value.

(4) Поскольку матерных выражений редактор не одобряет, я ничего не буду говорить про реализацию AGP у этого чипсета и материнских плат на нем. Типы работающих видеокарт узнаются только подбором.

Таблица всех режимов AGP:

Режим

Уровень лог. «1»

AGP 1.0

AGP 1.0/2.0

AGP 2.0

AGP 2.0/3.0

AGP 3.0

1x

3.3V

+

+

+

-

-

1x

1.5V

-

+

+

+

-

2x

3.3V

+

+

+

-

-

2x

1.5V

-

+

+

+

-

4x

1.5V

-

+

+

+

-

8x

0.8V

-

-

-

+

+

Как видно из этой таблицы, в AGP 2.0 и 3.0 от режимов 1x и 2x не отказались, а просто перевели их на сигнальные уровни 1.5в. Так что не удивляйтесь, увидев вариант “1x” в настройках режима AGP на новых платах.

А теперь о том, что из этого следует, и как это все применить на практике

1.Совместимость новых материнских плат и старых карт можно определить из таблиц, приведенных выше. В спорных случаях рекомендуется установить карту на материнскую плату с универсальным слотом 1.0/2.0, и проконтролировать включение режима AGP 4x с помощью RivaTuner или PowerStrip. Если карта работает в этом режиме, на новые платы ее можно ставить безбоязненно.

2.Сжечь новую видеокарту установкой в старую материнскую плату невозможно. Единственная на данный момент карта без поддержки AGP 1.0 — RADEON 9600/PRO, но и ей это не грозит, так как в старые платы она не влезет физически.

3.Не смотря на это, стабильность работы конфигураций «старая плата + новая видеокарта» не гарантируется.

Старые платы и новые видеокарты — как заставить работать?

В этом разделе собрано большинство проблем, которые могут возникнуть при установке новых видеокарт на старые материнские платы:

•Недостаточная мощность блока питания.

Проблема: Мощность блока питания недостаточна.

Симптомы: Уход напряжений питания из допустимых пределов. Запуск системы только после нажатия reset. Высокий уровень помех по питанию, и, как следствие, произвольные сбои в работе (трудноопределимо).

Решение: Заменить БП.

•На материнской плате установлен стабилизатор на линии VDD3.3

(Сразу предупреждая возможные вопросы — на большинстве плат питающие напряжения на AGP подаются непосредственно с разъема питания системной платы. То, что в BIOS'е названо VAGP — всего-навсего VDDQ, и повышать его не стоит).

Проблема: Из-за маломощного стабилизатора на линии VDD3.3 видеокарте не хватает питания.

Решение: Для AT платы — установка более мощного стабилизатора (трудновыполнимо). Для ATX платы — запитка видеокарты непосредственно от БП, как правило, отключением стабилизатора и напаиванием проводника от разъема питания. На некоторых материнских платах стабилизатор отключается джамперами.

•Неверный уровень VREFGC.

Проблема: Наряжение VREFGC, подающееся картой стандарта 2.0 на контакты A66 и B66 закорачивается на землю платой стандарта 1.0. В стандарте 1.0 эти контакты зарезервированы. Зачем зарезервированные контакты понадобилось заземлять — тайна, сокрытая в мраке ночи. Так сделано, например, на Chaintech 6BTM

Симптомы: Система не стартует.

Решение: Изолировать два последних контакта в слоте.

•Маломощный стабилизатор VDDQ.

Проблема: Неустойчивость передач по шине из-за маломощного стабилизатора VDDQ. В особо запущенных случаях — использование общего стабилизатора VDDQ для AGP и оперативной памяти. Для информации: по стандарту AGP максимальный разрешенный ток линии VDDQ — 8 ампер.

Симптомы: Нестабильность системы, особенно в 3D-играх. Для общего стабилизатора VDDQ AGP и памяти — нестабильность проявляется при установке нескольких модулей памяти или модулей с большим количеством микросхем совместно с новой картой.

Решение: Установить более мощный стабилизатор. Для второго случая — развязать VDDQ памяти и AGP. И то, и другое — трудновыполнимо, проще заменить плату.

•Высокая частота AGP

Проблема: На чипсете Intel 440BX при использовании процессоров с шиной 133MHz частота AGP составляет 89MHz вместо стандартных 66.

Симптомы: Нестабильность системы, особенно в 3D играх. Иногда система вообще не стартует.

Решение: Установить режим 1x. При отсутствии положительного результата — СНИЗИТЬ напряжения VDDQ и VREF, но не более чем на 5% от номинала (до 3.135в и 1.5675в минимум). Учтите, что VREF=VDDQ/2, причем допустимое отклонение — не более 2%. Это особенно критично для плат ABIT и ASUStek, у которых VDDQ (и, соответственно, VREF) может быть завышено по умолчанию, что стабильности в данном случае совсем не прибавляет... Часто задают вопрос — а что же карта с поддержкой 4x или 8x какие-то 89MHz переварить не способна? Ответ прост — во-первых, в штатном режиме работы частота всех линий, кроме AD и SBA, так и осталась 66MHz, даже в стандарте 3.0. Во-вторых — хотя линии на AD и SBA в режиме 4x и выше работают с частотой, превышающей 89MHz (или 178 — для режима 2x), но работают-то они при других сигнальных уровнях.

Некторые перспективы

Предполагается, что будет существовать два типа карт AGP Pro - High Power и Low Power. Карты High Power могут потреблять от 50 до 110W. Естественно, такие карты нуждаются в хорошем охлаждении. С этой целью спецификация требует наличия двух свободных слотов PCI с component side (стороны, на которой размещены основные чипы) карты.

При этом данные слоты могут использоваться картой как дополнительные крепления, для подвода дополнительного питания и даже для обмена по шине PCI! При этом на использование этих слотов накладываются лишь незначительные ограничения использовании слотов для подвода дополнительного питания:

·         Не использовать для питания линии V I/O;

·         Не устанавливать линию M66EN (контакт 49В) в GND (что вполне естественно, так как это переводит шину PCI в режим 33MHz).

·         При использовании слота для обмена по шине:

·         Подсистема PCI I/O должна разрабатываться под напряжение 3.3V с возможностью функционирования при 5в. .

Поддержка 64 х разрядного или 66MHz режимов не требуется.

Карты Low Power могут потреблять 25-50W, поэтому для обеспечения охлаждения спецификация требует наличия одного свободного слота PCI.

Все retail - карты AGP Pro должны иметь специальную накладку шириной соответственно в 3 или 2 слота - карта приобретает вид достаточно устрашающий. При этом в разъем AGP Pro можно устанавливать и карты AGP.

В общем, как представлю себе графическую станцию с двумя процессорами Хеоп и видеокартой AGP Pro High Power.....- можно здорово сэкономить на отоплении ...:-) Закрадывается крамольная мысль, что в спецификацию PC 200? будет заложено жидкостное охлаждение. Опять-таки поживем - увидим

Сходство шин AGP и PCI

32 х разрядная шина AGP своими корнями уходит в спецификацию локальной шины РС-1, но также имеет значительные улучшения и добавления, предназначенные для удовлетворения нужд высокопроизводительной 3 - х мерной графики. Главным отличием является тактовая частота. Шина РС-1 использует фиксированную частоту в 33МГц, а частота работы шины AGP повышена до 66МГц. Другие особенности шины AGP:

·         Конвейерные операций чтения и записи памяти, снижающие задержку доступа к памяти.

·         Демультиплексирование адреса и данных на шине, позволяющее достигать почти 100% эффективности шины.

·         Использование новых временных диаграмм в версии шины для напряжения питания 3,3в обеспечивает передачу одного (AGP 1X) или двух (AGP 2X) байтов на тактовой частоте в 66МГц, что позволяет довести пропускную способность чтения данных до 532Мбайт/сек.

·         Новая низковольтная спецификация позволяет осуществлять передачу 4-х байтов (AGP 4X) в каждом такте при тактовой частоте в 66МГц, обеспечивая пропускную способность свыше 1Гбайт/сек.

·         Для разъема шины расширения AGP используется новый разъем (с целью обеспечения требуемых характеристик сигналов), который не совместим с разъемом расширения шины РС-1. Поэтому платы расширения шин РС-1 и AGP не взаимозаменяемые механически.

 

studizba.com

Иллюстрированный самоучитель по компьютерным комплектующим › Интерфейсы › AGP [страница - 22] | Самоучители по операционным системам

AGP

AGP (Accelerated Graphic Port или Advancet Graphic Port, ускоренный графический порт) – это новая высокоскоростная шина, которая разрабатывалась компанией Intel специально для работы с графическим адаптером. Шина AGP лучше подходит для видеоадаптеров по сравнению с PCI (не PCI-Express!), так как она предоставляет прямую связь между центральным процессором и видеокартой. Дело в том, что поначалу графические видеокарты использовали шину PCI, но скоро ее пропускная способность уже не справлялась с возрастающими мощностями видеокарт. И тогда была разработана новая шина AGP.

Интерфейс AGP

Слот AGP на материнской плате

В отличие от универсальной шины PCI, AGP используется только для видеокарт. Интерфейс имеет несколько модификаций. На данный момент существует последняя версия AGP 8x с пропускной способностью 2.1 Гб/с, что в 8 раз больше начального стандарта AGP с параметрами 32-бит и 66 МГц.

Спецификации AGP

Спецификации AGP появились в 1997 году при участии Intel. В первой версии описывалась спецификация AGP, включающую две скорости: 1x и 2x. Вторая версия спецификации описывала AGP 4x, а в версии 3.0 – AGP 8x:

  • AGP 1x – 32-битный канал, работающий на частоте 66 МГц, с пропускной способностью 266 Мбайт/с, что в два раза выше полосы PCI.
  • AGP 2x – 32-битный канал, работающий с пропускной способностью 533 Мбайт/с на частоте 66 МГц.
  • AGP 4x – 32-битный канал, работающий на 66 МГц, но в результате дальнейших ухищрений была достигнута учетверенная "эффективная" частота 266 МГц, с максимальной пропускной способностью более 1 ГБ/с.
  • AGP 8x – дополнительные изменения в этой модификации позволили получить пропускную способность уже до 2.1 ГБ/с.

Видеокарты с интерфейсом AGP и соответствующие слоты на системных платах совместимы в определенных пределах. Видеокарты, рассчитанные на 1.5 Вольт, не работают в слотах, поддерживающих 3.3 Вольт, и наоборот. Но существуют универсальные разъемы, которые поддерживают оба типа плат. Некоторые новые видеокарты имеют специальные ключи, не позволяющие установить их в старые системные платы без поддержки 1.5 В. При апгрейде старой AGP системы обязательно нужно учитывать возможную несовместимость разных версий слотов AGP. Новые видеокарты в старые системные платы можно вставлять без особого риска, в крайнем случае, система просто не заработает. Попытки установки старых видеокарт на новую материнскую плату может иметь печальные последствия. Для установки новых видеоплат на устаревшую материнскую плату, имеющую разъемы AGP 1.0, нужно, чтобы новая видеокарта имела универсальный разъем AGP 1.0/2.0.

Универсальный разъем AGP 1.0/2.0

Но если новая видеокарта имеет разъем AGP 2.0, то заставить ее работать на старой системе не получится. AGP 3.0 имеет такой же разъем, как и AGP 2.0.

На данный момент число новых материнских карт с AGP падает, уступая дорогу более современной и перспективной шине PCI Express.

samoychiteli.ru

AGP-разъем к материнской плате

Сегодня компьютерные технологии развиваются столь быстрыми темпами, что владельцы персональных компьютеров просто не успевают закончить модернизацию своего компьютера, когда производители выпускают очередную новинку. Кажется, что процесс модернизации никогда не закончится. То же самое случилось, когда на материнских платах появился AGP-разъем. Почему этот разъем так быстро ушел в небытие? Какова история его появления?

AGP-разъем: история появления

AGP представляет собой специализированный разъем для подключения к материнской плате видеокарты. Соответственно, он устанавливается на этой плате. Аббревиатура AGP на английском языке расшифровывается как Accelerated Graphics Port,что если переводить дословно означает «быстрый графический порт». Почему же его назвали именно так, и как он появился? Вплоть до 1996 в качестве графического интерфейса, используемого производителями видеокарт, выступал PCI. Однако скорость обмена информацией при использовании этой графической шины была достаточно мала. Требования, которые постепенно возникали у разработчиков программного обеспечения, не могли быть целиком и полностью удовлетворены при помощи этого интерфейса, это не говоря уже о разработках на будущие периоды. По этой причине компания Intel разрабатывает AGP-разъем и устанавливает его на материнскую плату. Вместе с тем разрабатываются и видеокарты с таким интерфейсом. Двадцать лет спустя появляется новый комплект материнской платы и соответствующей ей видеокарты.

Видеокарта с разъемом AGP: преимущества

Если рассуждать о преимуществах, которые приобрели компьютеры, обладающие AGP-разъемом, то стоит отметить, что пропускная способность данной шины сразу была увеличена в два раза. Благодаря чему удалось сделать это? Во-первых, за счет увеличения частоты обмена по данному интерфейсу. Разъем AGP позволил увеличить скорость обмена информацией до 66 мГц. Это дало возможность создавать более мощные видеокарты. Программисты стали разрабатывать под этот интерфейс соответствующие приложения. Примерно в это же время появляются новые программные продукты, в том числе и игровые. Все эти преимущества и привели к тому, что владельцы персональных компьютеров занялись модернизацией собственного оборудования. Однако для этого приходилось выполнять замену не только материнской платы и процессора, но и видеокарты. Для тех пользователей, которые в то время не могли себе позволить провести полную модернизацию персонального компьютера, был разработан переходник с AGP. Это дало возможность на какое-то время сэкономить средства на замену видеокарты. Со временем, конечно, так или иначе, пришлось сделать полную замену оборудования компьютера.

Какие существуют виды разъемов AGP?

Интерфейс AGP просуществовал вплоть до 2004 года. Разработчики за восемь лет значительно модернизировали данный интерфейс, увеличивая его производительность. Если говорить о разрядности шины, то она во всех вариантах используется 32-разрядная. Немного позже появились компьютеры, имеющие 64-битную шину. По этой причине разработчикам пришлось использовать 32-разрядный интерфейс и искать возможность повышать производительность видеокарт и самого интерфейса AGP. Какой же выход из сложившейся ситуации был найден? Для решения проблемы разработчики использовали пакетную передачу данных. Так, например, первая карта AGP-1за один такт передавала один пакет информации. Однако этого оказалось недостаточно, поэтому практически сразу была разработана AGP-1, которая за такт передавала два пакета. Скорость передачи данных при этом была увеличена в два раза. Два года спустя разработчики выпустили уже AGP-4. Скорость по сравнению с картой предшественницей была увеличена еще в два раза. Производительность или пропускная способность интерфейса AGP-4при этом составляла один гигабит в секунду. Однако и этого оказалось недостаточно. Несколько лет спустя в продаже появились видеокарты AGP-8, которые оперировали уже восемью блоками информации за такт и пропускным каналом интерфейса в два гигабита за секунду. При этом появилась проблема передачи мощности через разъем AGP. Слот AGP-8 не позволял обеспечить хороший контакт при передаче большой мощности по питанию видеокарты. Специально для мощных игровых видеокарт разработчики создали слот AGP Pro. Это была последняя модификация данного интерфейса.

Дальнейшая история слота AGP

Что бы там ни было, со временем стало понятно, что компьютерам требуется новый интерфейс, который смог бы заменить собой разъем AGP. Материнской плате был нужен новый слот, который, с одной стороны, мог бы иметь большую пропускную способность, и с другой стороны – обеспечить все возрастающую потребляемую мощность. На смену AGP, начиная с 2004 года, приходит PCI Express. Преимущество этого слота заключалось в возможности работы с 64-бытными шинами, что значительно повышает возможность работы с графикой. Примерно в это же время на рынке начинают появляться мониторы больших размеров. Чтобы качественно отображать такое изображение на мониторе, необходимо было работать с большими разрешениями. Производители компьютерных игр постоянно разрабатывают продукцию, которая требует более высоких системных требований к видеосистеме компьютера. Разъем AGP в этом случае безнадежно уходит в прошлое. Действительно ли для данного интерфейса все так плохо? Куда исчезнет слот AGP? Можно ли на сегодняшний день сказать, что эра AGP ушла безвозвратно? Возможно, в скором времени наступят времена, когда будет невозможно найти материнскую плату или видеокарту с таким разъемом, разве что на компьютерной барахолке или в специализированном музее. Сегодня данный интерфейс весьма активно используется. Оборудование с таким слотом уже давно перестали выпускать, да и последние запасы на складах в скором времени совсем иссякнут. А те экземпляры, которые установлены в компьютерах сегодня, постепенно приходят в негодность. Тогда люди в скором времени начнут забывать о слотах AGP. Но до этого еще далеко.

Использование слота AGP в современных условиях

Как ранее уже было сказано, компьютеры с интерфейсом AGP невозможно использовать в тех устройствах, которые работают с графическими, видео- и игровыми приложениями. Однако количество компьютеров, которые работают с такими приложениями не так велико. Самый большой сегмент занимают компьютеры, работающие с офисными приложениями. Для них скорость видеопотока не слишком важна. Достаточно много компьютеров, имеющих AGP-слот, работают и сегодня. А поскольку надежность таких машин довольно велика, многие компании не спешат отказываться от их использования в своих офисах. Скорее всего, такая ситуация еще будет продолжаться не один год. Рано или поздно, AGP, конечно, будет вытеснен более современным и новым слотом, однако для этого потребуется определенное время.

Компромиссное решение конструкторов материнских плат

Производители компьютерной техники предполагали, что замена слота AGP на PCI-Express будет идти довольно быстрыми темпами. Но этого не произошло. На последнем этапе своего развития AGP-карты оказались настолько хороши, что многие пользователи и по сей день не спешат от них отказываться. С другой стороны, подобная модернизация требует довольно много средств. Для пользователей это сдерживающий фактор. Учитывая это, производители материнских плат решили пойти на компромисс. Они приняли решение установить на материнской плате одновременно два слота – AGP и PCI Express.Однако, одновременно использовать оба слота невозможно. Пользователь мог выбрать тот слот, видеокарта на который у него имелась.

Возможность использования разъема AGP в других целях

Многих пользователей интересует вопрос о том, какие устройства можно подключить к разъему AGP, поскольку довольно часто в описанных выше компьютерных системах, данный слот освобождается и не используется. Стоит понимать, что данный интерфейс был разработан специально для управления видеокартой. Можно ли использовать его для других целей? В принципе, это возможно, однако для этого необходимо переделать управление данным интерфейсом. Вряд ли эффективность такого управления увеличится. Существует множество других интерфейсов, предназначенных для решения такого рода задач.

computerologia.ru

agp » Обзоры процессоров, видеокарт, материнских плат на ModLabs.net

Вступление

"Хотелось бы обмусолить тему, дабы раз и навсегда разобраться с вопросом на чём гонять АГП." - XSS

В данной статье (надеюсь, не последней) пойдёт речь о том, какие существуют платформы для бенчмаркинга видеокарт с интерфейсом AGP. Если ваша задача - срубить побольше боинтов на всем известном сайте (как это не слышали? Пишите, расскажем), то вы не по адресу - на AGP много не заработать. Взяв топовый на данный момент процессор, разогнав его на воздухе и отгоняв десяток самых популярных видеокарт прошлых поколений, вы таким образом получите больше трешебоинтов, чем отгоняв, пожалуй, все AGP карты. Потому бенчмаркинг AGP - вопрос личного интереса, "old school", дань памяти и каждый сам решает, чего ещё.

Чтобы хорошо гонять old school рекомендую познакомиться, как гоняли AGP видеокарты во время их присутствия на рынке, например, здесь: Битва за рекорды: 27384 в 3DMark от ModLabs/ITC.ua

Основная проблема, стоявшая перед 3D-бенчмаркингом - это процессорозависимость. Именно она не даёт полной отдачи от разгона видео, а порой позволяет на дефолте обходить разогнанные карты. Хотя кажется, что карты AGP настолько слабы, что их процессорозависимость минимальна, это не так. Раньше основная битва в стане AGP была между socket A и socket 478.

Мы же рассмотрим, какие возможности для бенчмаркинга AGP видеокарт появились спустя почти 10 лет с выхода вышеупомянутой статьи, где, кстати, гоняли предпоследнее поколение AGP-видеокарт.

Платформа Intel

Проверенные решения

Тут практически без вариантов поделки от ASRock. Материнские платы широко используются и поддерживают все LGA775 процессоры (а именно - включая Penryn). ASRock ConRoe865PE Северный мост – Intel 865PE. Заявлена поддержка всех Core2 и Core2 Quad на Kentsfield. DDR1. С разгоном в BIOS уныло. Напряжение питания процессора изменяется простым вольтмодом. Обсуждение на overclockers.ru ASRock 4CoreDual-SATA2

ASRock 775Dual-VSTA Asrock 4CoreDual-VSTA Три эти платы практически идентичны. Северный мост – VIA PT880 Ultra. Память одновременно DDR1 и DDR2. -SATA2 отличается только более новым южным мостом, последние две - имеют одинаковый и без проблем перешиваются друг в друга. Обсуждение на overclockers.ru.

Другие решения

Asrock 775i65G R3.0 Практически аналогична ConRoe865PE, также поддержка всех Core2 (хотя про квады в спецификации не написано), DDR1. Asrock 775i65G R2.0 Обе платы используют чипсет Intel 865G. Asus P5PE-VM

Чипсет Intel 865G. Официально не держит квады. Самый максимум X6800. Для платы существует модифицированный BIOS, значительно расширяющий её возможности. Biostar P4M800Pro-D1 Ver. 7.x

Северный мост - VIA P4M800 Pro. Последний BIOS датируется серединой 2007 года, потому плата наверняка не поддерживает Penryn. Таким образом, её предел - X6800. Gigabyte GA-8I865GME-775-RH

Северный мост - Intel 865G. Ревизии 2.0, 3.9 и 6.6 поддерживают Core2 65nm, последняя ревизия 6.6 - квады до QX6800 (про поддержку QX6850 не говорится, хотя по идее должен а пониженной шине). Последний BIOS, датирован 2007 годом, т.е. поддержки Penryn наверняка нет. Визуальные отличия между ревизиями платы можно изучить на следующем картинке:

Gigabyte GA-VM800PMC

Северный мост - VIA P4M800 Pro. Поддерживает только Pentium Dual-core E2xxx и Core2 Duo E4xxx. Официально не поддерживается даже E6xxx, не говоря уже про квады и Penryn. В порядке рабочего бреда стоит также упомянуть следующие платы:

Эти ревизии поддерживают Pentium Dual-core E2200/2220 и Core2 Duo E4300. Больше хорошего про них говорить не стану, да и не могу.

Рекомендуемые процессоры.

Следует напомнить, что чипсет должен работать с максимальной частотой и независимо от памяти (уметь менять делители памяти). На процессор, в большинстве случаев, должно быть повышено напряжение, что возможно только модификациями материнских плат. Вольтмод чипсета также рекомендуется в некоторых случаях. С процессорами, как и везде, два варианта. Разгон по шине и свободный множитель.

Разгон по шине. За точку отсчёта возьмём 300 МГц по шине, что для большинства матерей и на Intel и на VIA вполне реально.   Для достижения максимального эффекта нужна низкая номинальная шина, высокий множитель и как можно бОльший кэш. Обращаю отдельное внимание, что речь идёт о теоретическом пределе разгона по шине, исходя из предела в 300МГц для материнской платы. Соотносите данные с объективной реальностью - что на E5800 вы не достигнете шины 300, поскольку частота 4800МГц на воздухе для E5xxx - недостижима. Ближе к реальности - около 4ГГц, для E4xxx - 3,7-3,9ГГц. Для E8400 реально уйти выше названной частоты, поскольку 300МГц взято из 99% гарантии работы, а на деле платы могут 320МГц, а порой и выше. В идеале - проверяйте сперва свои процессоры на приличных материнских платах на предмет разгонного потенциала, отношения к повышению напряжения, FSB wall и т.п. 2 ядра, 2 кэш, 200 шина Самый простой и бюджетный вариант.

2 метра кэша шина 200(800) МГц. Множитель 12/13. С разгоном до 300 по шине предельная частота 3600/3900 МГц.

Всё те же унылые 2 метра кэша, та же шина, меньший техпроцесс, но повыше множители – 15/16 и получше производительность. Предельная частота 4500/4800 МГц. 2 ядра, 3 кэш, 266 шина

Множитель 11/11,5. С разгоном, соответственно, 3300/3450 МГц. И неизвестно, как поведёт себя мать с дробным множителем в случае с E7600. 2 ядра, 6 кэш, 333 шина

Множитель 10, что с обсуждаемой частотой шины даёт 3000 МГц. Обладая могучим кэшэм в 6 метров он может обогнать все вышеописанные процы в 3дмарках, если конкретная карта в тесте не упирается в производительность процессора. 4 ядра, 8 кэш, 266 шина

Наверное идеальный вариант из дешёвых квадов, если выбирать только из Intel. Точно поддерживается большинством матерей (официально не поддерживается 775Dual-VSTA и P5PE-VM). Предельная частота 3000 МГц. 8 метров кэша и 4 ядра для AGP вполне круто в ядрозависимых марках (3DMark06). Разгон с множителем

Лютая интеловская экзотика, скорее даже исключение из правил. Свободный множитель. По умолчанию 11, шина 266. К сожалению, кэш всего 2 метра. На воздухе процессор полностью аналогичен E5700/5800, поскольку сверхвысокие множители E6500K недостижимы из-за слишком большой итоговой частоты (E6500K гонится как E5200-5800, т.е. 4,5-4,7 ГГц на воздухе не может, как E8400-8600) Из шести штук XE процов под 775 интересны только три с половиной.

  • QX9770 - топовый процессор. Даже номинальная шина недостижима на обсуждаемых материнских платах, потому работать он будет на меньшей шине. По сути, для нас он является Wolfdale со свободным множителем, от 4-х ядер толку около нуля.
  • QX9650 - то же самое, но дешевле. Потому, если не жалко денег, рекомендуется к приобретению, как лучший для тестов AGP как минимум на Intel.
  • X6800 Единственный в линейке с двумя ядрами. Шина 266, но настораживает всего 4 метра кэша. Что удивительно, на данный момент на ебее дешевле, чем более унылый E6500K, о котором выше.
  • QX6700 8 кэша, 266 шина.

 

Итоговые рекомендации:

  • Если хватает денег и не жалко - QX9770/9650, получаем Wolfdale с шестью метрами кэша со свободным множителем
  • Если денег поменьше - берём E5300-5800 (с младшими придётся чуть больше выжать шину, чтобы достичь предела камня), в связку рекомендуется взять E8400/8600 для прироста в нетребовательных к мощности CPU случаях
  • То же, но с мощным криогенным охлаждением и желанием не быть как все - вместо E5800 ищем E6500K
  • Самый простой вариант из конкурентоспособных - E4600/4700

Платформа AMD

Asrock AM2NF3-VSTA

Классическая схема - южный мост NVIDIA nForce3 250, при этом разведена память DDR2 и поддерживаются Phenom II. Плата не поддерживает разблокировку ядер, т.е. если вы собрались гонять 3DMark06 на 4-х ядрах - вам нужен Phenom II X4. ALiveDual-eSATA2

Более извращённая схема, использующая в качестве чипсета связку ULi (купленная NVIDIA) M1695 + nForce3 250, а потому обладающая PCI-E и AGP портами, в остальном идентичная AM2NF3. Также не поддерживает разблокировку ядер. Процессоры

  • AMD Phenom II X2 555-570 Black Edition
  • AMD Phenom II X4 955-980 Black Edition

Желательно искать процессоры степпинга C3, по причине их более высокого разгонного потенциала.

Начало эпохи PCI-Express

Настало время, когда даже пропускной способности интерфейса AGP 8x перестало хватать, да и назрела необходимость замены старому PCI. Тогда-то и появился 3GIO (3rd generation I/O - система ввода-вывода третьего поколения) с кодовым названием Araphoe. То, что сейчас известно как PCI-Express. Когда стандарт был принят, Intel возвестила, что следующий виток эволюции (в лице чипсетов i915P/925X) будет сопровождён полной сменой инфраструктуры - socket 478 на socket T (AKA LGA775), DDR1 на DDR2, AGP на PCI-Express. Производители GPU, имеющие чипы с интерфейсом AGP быстро обновляют свои решения - ATI выпускает Radeon X-серии с родной поддержкой PCI-E, NVIDIA создаёт двухсторонний переходной мост HSI, позволяя производителям адаптировать чипы с интерфейсом AGP для стандарта PCI-Express, и даже XGI создаёт свой переходной мост. Переходной мост Rialto создала и компания ATI, но использовался он только для создания AGP-версий PCI-E видеокарт.

PCX5300

XGI XG47

Radeon 3850 AGP

Отдельно отличилась NVIDIA - чип NV40, выпущенный под именем Geforce 6800GT/Ultra, имел интерфейс AGP и попал как раз в момент появления PCI-Express. Вместо того, чтобы воспользоваться тем же решением, что в Geforce PCX и распаять на плате мост HSI, NVIDIA распаивает HSI прямо на подложке GPU! Решение получило название NV45, но недолго просуществовало, уступив место NV41 и NV42, имевшим врождённую поддержку PCI-E. В это переходное время, как обычно и бывает, начали появляться решения, стремящиеся помочь тем, кто не попадал в эволюционный виток, навязанный Intel - т.е. тем, кто имел мощную AGP видеокарту и хотел обновить старую AGP систему, либо наоборот, имел AGP платформу, не уступающую в производительности новой LGA775, но хотел обновить видеокарту. Были созданы и продемонстрированы версии карт, обладающие двумя интерфейсами - как AGP, так и PCI-Express.  

MSI Geminium-VIII, основанная на Radeon X800XL. Подробные фото на overclockers.ru

HIS X1600 Pro

Переходники

Albatron ATOP Поскольку мост HSI работает в обе стороны, то идея переходника, можно сказать, витала в воздухе. И была воплощена компанией Albatron, выпустившей переходник Albatron ATOP (AGP To PCI-E).

Переходник Albatron ATOP

Система с переходником Albatron ATOP в действии

Казалось бы, идеальный вариант для тестирования AGP карт в PCI-E материнских платах. Но ограничения его работы сделали его практически непригодным для использования:

  1. Очень ограниченный список поддерживаемых карт (Geforce 2, являющийся ближайшим родственником поддерживаемой Geforce4 MX, не запустился. Равно как ни одна карта ATI)
  2. Из-за джамперов, задающих, видимо, Dev_ID страпы, карта определяется драйверами и GPU-Z как соответствующая PCX, т.е. имеющая интерфейс PCI-E, а не AGP.

AGP 2x to PCI66 Такой переходник был сделан не один, но из последних вариантов - это версия trevormaco под названием AGP2PCI, где сделан простой электрический переходник AGP в шину PCI. В режиме PCI66, разъём AGP будет работать в режиме AGP 1x (т.е. без мультиплексирования, но на шине 66МГц). Разрабатывался для видеокарт Voodoo 6000, потому имеет соответствующий ценник и разъём стандарта AGP 2x. Поскольку PCI, то поддерживаются только 3.3В карты.

Переходник AGP2PCI

 

Система на базе переходника AGP2PCI и 3dfx Voodoo 5500 AGP

Платформа для AGP 2x карт, заключение

Если AGP в целом имеют небольшой запас очков, которые можно заработать, то AGP 2x и вовсе неблагодарное в этом смысле занятие. Помимо экзотики с переходником AGP2PCI, также существуют и платформы для работы с такими картами. В силу того, что материнские платы с поддержкой AGP 8x не поддерживают 3.3В карты, для тестов старых AGP 2x карт приходится использовать материнские платы с универсальным разъёмом AGP, обладающие поддержкой только AGP 4x.

Для платформы Intel подойдут платы на следующих чипсетах:

Для AMD топовым чипсетом является VIA KT333, который и используется в большинстве категорий, тем более, что многие процессоры socket A обладают свободным множителем.

Карты с интерфейсом AGP 2x имеют прорезь в отличном от слота AGP 8x месте, потому физически в указанные ранее платы, не влезут. Но влезут в универсальные AGP 4x платы. Существуют также 1.5В AGP 4x платы, у которых прорезь присутствует там же, где у AGP 8x плат, да и с совместимостью те же ограничения (т.е. 3.3В AGP 2x они не принимают).

AGP 2x разъём

универсальный (без ключей) AGP 4x разъём; всеядный

AGP 4x 1.5В разъём или AGP 8x разъём; не принимает AGP 2x карты

Заключение

Надеюсь, данная статья помогла ответить на интересующие вопросы по бенчингу AGP карт, открыла что-то новое или освежила забытое. Хочу высказать благодарность в первую очередь XSS, который в своё время данный вопрос и поднял и начал работу по упорядочиванию имеющихся знаний.

Также выражаю благодарность участникам команд (думаю, сами поймёте, кому): Always More Digital, Hardware Hackers, Team MXS ModLabs.net, Team Russia, XtremeLabs.org и просто вольным оверклокерам, если кого-то забыл. Надеюсь, это будет первой ласточкой подобных статей.

Обсуждение статьи ведётся в теме форума.

www.modlabs.net

Паяем разъем AGP "на коленке"

В своей практике не раз сталкивался с необходимостью менять разъемы PCI или AGP.

Паяльной станцией даже с "широкой" насадкой сделать это проблематично. Греть же всю плату на электроплитке не всегда представляется возможным - сей процес чреват деградацией конденсаторов и иных чувствительных к нагреву компонентов.

В свое время, я разжился на термофен . В комплекте с ним шло несколько насадок. И, о чудо, одна из них в точности соответствовала моим потребностям:

Сам процес пайки мало отличается от пайки мостов (BGA). Фен устанавливаем вертикально, предварительно закрепив плату на краю стола.

Греем снизу. Собственно здесь - www.rom.by/node/16450 всё достаточно подробно описано. Единственное отличие - при демонтаже флюс вообще не нужен, а при монтаже его надо самый минимум.

Выпайка донорского разъема, как и пайка, производится при температуре 360oC (воздух немного остывает в насадке, поэтому и нужно повышение температуры выше рекомендованных 350oC). Осторожно покачивая разъем, проверяем степень нагрева. Если разъем легко качается и не слышно характерного скрипа полурасплавленного припоя, осторожно вынимаем донорский "орган".

Результат:

Монтаж разъема имеет одну хитрость. Плата, в большинстве случаев деформируется от нагрева, и контакты свежеустановленого разъема погружаются на разную глубину. Деревянной оправкой (карандаш, щепка etc) прижимаем текстолит посредине прогнутого участка, снизу. В то же время, прижимаем и сам AGP разъем сверху. Палочка выступает в роли теплоотвода и средние контакты остывают первыми, удерживая плату от прогиба, пока остывают остальные. Хорошо чтобы площадь контакта оправки с платой была несколько квадратных сантиметров.

Как показала практика, разнообразные фиксирующие рамки подобного эффекта не дают - после остывания, плата остается деформированной.

Не лишним также будет выпаять на время замены разъема конденсаторы, расположенные возле места пайки.

Результат экспериментов - две платы "поднятых" за пол-часа.

www.rom.by