Что такое память компьютера, какая она бывает? Что такое компьютерная память


Виды оперативной памяти компьютера, понятие ОЗУ

В этой статье мы постараемся рассказать как можно больше про оперативную память компьютера (далее паять компьютера), как со стороны логических понятий так физических.

Конечно, в одной статье рассказать про память компьютера не возможно, поэтому она будет разделена на несколько частей, которые будет выходить с определенной периодичностью.

Основные понятия оперативной памяти компьютера

Про оперативную память компьютера слышали многие, но если спросить простого пользователя «А что это такое», пройдет процесс умственного зависания, и вряд ли он вам правильно ответит. Хотя может быть это ему вовсе не нужно, но вам-то нужно, если Вы читаете эту статью, значит, Вы хотите разобраться в этом вопросе. О, немножко ушли от темы.

Так, что же такое оперативная память компьютера

Оперативная память компьютера это специальная физическая область, которую использует процессор компьютера для своей работы. В данной памяти компьютера в ходе его работы хранятся данные, которые уже находятся в стадии обработки и по мере их необходимости процессор извлекает их.

Однако данную память компьютера потому и называют оперативной, что данные в ней хранятся только при его работе. Перед выключением компьютера или его перезагрузкой, такие данные следует сохранить на жестком диске. Если Вы этого не сделаете, то навсегда их потеряете.

Говоря про оперативную память, в основном подразумевают общий термин, память компьютера, поэтому дальше мы будем так и говорить, память компьютера.

Память компьютера представляет из себя набор микросхем, расположенных на специальной плате в виде отдельных модулей.

Ранее память компьютера имела короткий термин RAM (Random Access Memory – оперативная память), теперь же правильно ее можно называть DRAM – Dynamic RAM (динамическая оперативная память). И это правильно, ведь данные в такой памяти хранятся в динамическом режиме, постоянно меняя друг друга с большой скоростью, в приделах 15мс, а у современных модулях памяти и еще быстрее.

Но существует и память SRAM, статическая память компьютера, где данные не обновляются постоянно. Данная память работает тоже только при включенном компьютере, но об этом по позже.

Следует понимать, что определение «хранение данных» не может быть применено к памяти RAM компьютера (по нашему упрощено ОЗУ), оно больше подходит для жестких дисков, флешь памяти, и другим аналогичным устройствам.

Память компьютера представляет из себя, не только набор микросхем, но включает в себя такие определения, как размещение, а так же логическое отображение.

Под размещением подразумевается расположение входящих данных по только определенным в данный момент времени адресам памяти. Это сделано, для того, чтобы не было хаоса, ведь объем памяти не безграничный.

Логическое отображение

Это способ с использованием, которого данные размещаются по выделенным адресам, которые находятся в микросхемах памяти.

Вся память компьютера, не только оперативная, измеряется в мегабайтах (Мб) или гигабайтах (Гб). 1 Гб равен 1024 мегабайта. Почему это так в рамках данной статьи мы пока рассматривать не будет.

Чтобы правильно понять назначение памяти RAM и как она взаимодействует с памятью на жестком диске или другом устройстве можно привести пример из жизни.

Вы решили почитать интересную книгу. Для этого вы ее взяли из своего книжного шкафа, где много других книг.

Роль жесткого диска

Жесткий диск будет играть роль книжного шкафа, а роль оперативной памяти будет играть стол, на котором лежит читаемая вами книга. Но вам нужна еще, какая то информация. Вы начинаете искать нужные книги в шкафу, тратя на это время. Найдя все нужные книги, вы кладете их на стол.

Теперь Вам не нужно постоянно обращаться к шкафу тратя много времени. Вы теперь на много быстрее находите нужную информацию на своем столе, который, повторюсь, выполняет, роль оперативной памяти.

Вы закончили свою работу, и убрали книги обратно в шкаф. То есть компьютер был выключен, перестало поступать напряжение в микросхемы оперативной памяти, и она очистилась от данных.

Почему так сделано

Передача данных между процессором и памятью компьютера (естественно оперативной) происходит с огромной скоростью, которая на много превышает скорость передачи данных между процессором и жестким диском.

Поэтому такой подход значительно ускоряет скорость работы компьютера и без установленных планок данной памяти в специальные слоты ни одни компьютер даже не включится.

Если по ряду причин ваш компьютер сильно перегружен при этом объем оперативной памяти компьютера не большой, то частично данную ситуацию может спасти виртуальная память компьютера, это когда на жестком диске выделено часть места, которое играет роль оперативной памяти. Однако, по причине того, как уже говорилось выше, обмен данными в данном случае будет, проходит медленно, виртуальная память компьютера ситуацию сильно не спасает.

Но не нужно забывать про то, что загруженный в память компьютера документ имеет свой настоящий оригинал, который расположен на жестком диске. Это основной документ и пока вы не произведете сохранение его рабочей копии, допустим документа Word, и не произойдет перезапись данных на жестком диске, вы можете потерять набранную информацию, что часто в принципе и случается, особенно, когда резко пропадает электричество в сети.

Поэтому чем больше объем оперативной памяти компьютера, тем лучше. Но следует помнить про такие понятия как 32-х и 64-х битные операционные системы, которые поддерживают разное количество оперативной памяти компьютера.

К примеру, 32-х битная операционная система Windows поддерживает не более 4 Гб памяти, поэтому если вы установите в такой компьютер даже планки на 8 Гб, у вас все равно будет 4 Гб, пока вы не поставите 64-х битную версию ОС. Но про это будет отдельная статья.

Хочется так же сказать, что до 1996 года стоимость оперативной памяти компьютера была очень высокой, 1 мб стоил 40 долларов. Поэтому нападения на склады, где хранилась данная память, в те времена были не редкость. К примеру, слот в 16 мб стоил 600 долларов.

Но не было бы правильным, если со временем стоимость такой памяти не снизилась. В принципе так и произошло. В 1997 году ее стоимость уже была 0,5 долларов за 1 мб. Но с 1998 году цены на нее резко выросли в 4 раза. Виновником этому была компания Intel и землетрясение на о. Тайвань.

Память SDRAM

С землетрясением, все понятно, резко упали объемы производства оперативной памяти. С компанией Intel ситуация по сложнее.

Компанией Intel в начале 1998 года был разработанный новый стандарт памяти Rambus DRAM, про которую мы поговорим в следующих статьях.

Данный стандарт, в какой то, мере было навязан производителям IT индустрии, которые уже начали перестраивать своим производственные мощности под другое производство.

Но Intel не сумела выполнить свои обязательства и не предоставила вовремя необходимые наборы микросхем.

В результате возник большой дефицит памяти SDRAM и ее удорожание.

Но в дальнейшем данная проблема была решена и стоимость памяти компьютера была уже 0,2 доллара за 1 мб.

Сейчас в современном компьютерном мире системные памяти компьютера (их еще называют и так) постоянно усовершенствуются.

Разработка и выпуск новых типов памяти идет семимильными шагами и если мы лет 5 назад покупали компьютер, который поддерживает память типа DDR, то сейчас, что бы установить новые типы памяти DDR3 или DDR4, в лучшем случае придется заменить системную (материнскую) плату.

В современных компьютерах применяются следующие типы памяти, которые в свою очередь тоже делятся на подвиды.

Память компьютера ROM или ПЗУ (постоянно запоминающее устройство). Обычно в данной памяти записаны настройки BIOS компьютера.

Память компьютера DRAM – динамически запоминающее устройство. Запись данных происходит с произвольным порядком выборки.

Память компьютера SRAM – статическая оперативная память (Static RAM).

Но про данные типы памяти компьютера и не только мы поговорим в следующий статьях.

ОЦЕНКА СТАТЬИ:

Загрузка...

ПОДЕЛИТЬСЯ С ДРУЗЬЯМИ:

it-topic.ru

Компьютерная память — Национальная библиотека им. Н. Э. Баумана

Материал из Национальной библиотеки им. Н. Э. БауманаПоследнее изменение этой страницы: 16:57, 24 августа 2017.

Компьютерная память (устройство хранения информации, запоминающее устройство) — часть вычислительной машины, физическое устройство или среда для хранения данных, используемых в вычислениях, в течение определённого времени. Память, как и центральный процессор, является неизменной частью компьютера с 1940-х. Память в вычислительных устройствах имеет иерархическую структуру и обычно предполагает использование нескольких запоминающих устройств, имеющих различные характеристики. В персональных компьютерах «памятью» часто называют один из её видов — динамическая память с произвольным доступом DRAM (Dynamic Random Access Memory), — которая в настоящее время используется в качестве ОЗУ персонального компьютера. Задачей компьютерной памяти является хранение в своих ячейках состояния внешнего воздействия, запись информации. Эти ячейки могут фиксировать самые разнообразные физические воздействия. Они функционально аналогичны обычному электромеханическому переключателю и информация в них записывается в виде двух чётко различимых состояний — 0 и 1 («выключено»/«включено»). Специальные механизмы обеспечивают доступ (считывание, произвольное или последовательное) к состоянию этих ячеек. Процесс доступа к памяти разбит на разделённые во времени процессы — операцию записи (сленг. прошивка, в случае записи ПЗУ) и операцию чтения, во многих случаях эти операции происходят под управлением отдельного специализированного устройства — контроллера памяти. Также различают операцию стирания памяти — занесение (запись) в ячейки памяти одинаковых значений, обычно 0016 или FF16. Наиболее известные запоминающие устройства, используемые в персональных компьютерах: модули оперативной памяти (ОЗУ), жёсткие диски(винчестеры), дискеты (гибкие магнитные диски), CD- или DVD-диски, а также устройства флеш-памяти.

Функции памяти

Компьютерная память обеспечивает поддержку одной из функций современного компьютера, — способность длительного хранения информации. Вместе с центральным процессором запоминающее устройство являются ключевыми звеньями так называемой архитектуры фон Неймана, — принципа, заложенного в основу большинства современных компьютеров общего назначения. Первые компьютеры использовали запоминающие устройства исключительно для хранения обрабатываемых данных. Их программы реализовывались на аппаратном уровне в виде жёстко заданных выполняемых последовательностей. Любое перепрограммирование требовало огромного объёма ручной работы по подготовке новой документации, перекоммутации, перестройки блоков и устройств и т. д. Использование архитектуры фон Неймана, предусматривающей хранение компьютерных программ и данных в общей памяти, коренным образом переменило ситуацию. Любая информация может быть измерена в битах и потому, независимо от того, на каких физических принципах и в какой системе счисления функционирует цифровой компьютер (двоичной, троичной, десятичной и т. п.), числа, текстовая информация, изображения, звук, видео и другие виды данных можно представить последовательностями битовых строк или двоичными числами. Это позволяет компьютеру манипулировать данными при условии достаточной ёмкости системы хранения (например, для хранения текста романа среднего размера необходимо около одного мегабайта). К настоящему времени создано множество устройств, предназначенных для хранения данных, основанных на использовании самых разных физических эффектов. Универсального решения не существует, у каждого имеются свои достоинства и свои недостатки, поэтому компьютерные системы обычно оснащаются несколькими видами систем хранения, основные свойства которых обуславливают их использование и назначение.

Физические основы функционирования

В основе работы запоминающего устройства может лежать любой физический эффект, обеспечивающий приведение системы к двум или более устойчивым состояниям. В современной компьютерной технике часто используются физические свойства полупроводников, когда прохождение тока через полупроводник или его отсутствие трактуются как наличие логических сигналов 0 или 1. Устойчивые состояния, определяемые направлением намагниченности, позволяют использовать для хранения данных разнообразные магнитные материалы. Наличие или отсутствие заряда в конденсаторе также может быть положено в основу системы хранения. Отражение или рассеяние света от поверхности CD, DVD или Blu-ray-диска также позволяет хранить информацию.

НЖМД объёмом 44 Мб 1980-х годов выпуска и CompactFlash на 2 Гб 2000-х годов выпуска Устройство хранения информации на флеш-памяти

Классификация типов памяти

Следует различать классификацию памяти и классификацию запоминающих устройств (ЗУ). Первая классифицирует память по функциональности, вторая же — по технической реализации. Здесь рассматривается первая — таким образом, в неё попадают как аппаратные виды памяти (реализуемые на ЗУ), так и структуры данных, реализуемые в большинстве случаев программно.

Доступные операции с данными

  • Память только для чтения (read-only memory, ROM)
  • Память для чтения/записи

Память на программируемых и перепрограммируемых ПЗУ (ППЗУ и ПППЗУ) не имеет общепринятого места в этой классификации. Её относят либо к подвиду памяти «только для чтения», либо выделяют в отдельный вид. Также предлагается относить память к тому или иному виду по характерной частоте её перезаписи на практике: к RAM относить виды, в которых информация часто меняется в процессе работы, а к ROM — предназначенные для хранения относительно неизменных данных.

Энергозависимость

  • Энергонезависимая память (англ. nonvolatile storage) — память, реализованная ЗУ, записи в которых не стираются при снятии электропитания. К этому типу памяти относятся все виды памяти на ПЗУ и ППЗУ;
  • Энергозависимая память (англ. volatile storage) — память, реализованная ЗУ, записи в которых стираются при снятии электропитания. К этому типу памяти относятся память, реализованная на ОЗУ, кэш-память.
  • Статическая память (англ. static storage) — энергозависимая память, которой для хранения информации достаточно сохранения питающего напряжения;
  • Динамическая память (англ. dynamic storage) — энергозависимая память, в которой информация со временем разрушается (деградирует), и, кроме подачи электропитания, необходимо производить её периодическое восстановление (регенерацию).

Метод доступа

  • Последовательный доступ (англ. sequential access memory, SAM) — ячейки памяти выбираются (считываются) последовательно, одна за другой, в очерёдности их расположения. Вариант такой памяти — стековая память.
  • Произвольный доступ (англ. random access memory, RAM) — вычислительное устройство может обратиться к произвольной ячейке памяти по любому адресу.

Назначение

  • Буферная память (англ. buffer storage) — память, предназначенная для временного хранения данных при обмене ими между различными устройствами или программами.
  • Временная (промежуточная) память (англ. temporary (intermediate) storage) — память для хранения промежуточных результатов обработки.
  • Кеш-память (англ. cache memory) — часть архитектуры устройства или программного обеспечения, осуществляющая хранение часто используемых данных для предоставления их в более быстрый доступ, нежели кешируемая память.
  • Корректирующая память (англ. patch memory) — часть памяти ЭВМ, предназначенная для хранения адресов неисправных ячеек основной памяти. Также используются термины relocation table и remap table.
  • Управляющая память (англ. control storage) — память, содержащая управляющие программы или микропрограммы. Обычно реализуется в виде ПЗУ.

Разделяемая память или память коллективного доступа (англ. shared memory, shared access memory) — память, доступная одновременно нескольким пользователям, процессам или процессорам.

Организация адресного пространства

  • Реальная или физическая память (англ. real (physical) memory) — память, способ адресации которой соответствует физическому расположению её данных;
  • Виртуальная память (англ. virtual memory) — память, способ адресации которой не отражает физического расположения её данных;
  • Оверлейная память (англ. overlayable storage) — память, в которой присутствует несколько областей с одинаковыми адресами, из которых в каждый момент доступна только одна.

Удалённость и доступность для процессора

Первичная память (сверхоперативная, СОЗУ) — доступна процессору без какого-либо обращения к внешним устройствам. Данная память отличается крайне малым временем доступа и тем, что неадресуема для программиста. регистры процессора (процессорная или регистровая память) — регистры, расположенные непосредственно в АЛУ; кэш процессора — кэш, используемый процессором для уменьшения среднего времени доступа к компьютерной памяти. Разделяется на несколько уровней, различающихся скоростью и объёмом (например, L1, L2, L3). Вторичная память — доступна процессору путём прямой адресацией через шину адреса (адресуемая память). Таким образом доступна основная память (память, предназначенная для хранения текущих данных и выполняемых программ) и порты ввода-вывода (специальные адреса, через обращение к которым реализовано взаимодействие с прочей аппаратурой). Третичная память — доступна только путём нетривиальной последовательности действий. Сюда входят все виды внешней памяти — доступной через устройства ввода-вывода. Взаимодействие с третичной памятью ведётся по определённым правилам (протоколам) и требует присутствия в памяти соответствующих программ. Программы, обеспечивающие минимально необходимое взаимодействие, помещаются в ПЗУ, входящее во вторичную память (у PC-совместимых ПК — это ПЗУ BIOS). Положение структур данных, расположенных в основной памяти, в этой классификации неоднозначно. Как правило, их вообще в неё не включают, выполняя классификацию с привязкой к традиционно используемым видам ЗУ.

Управление процессором

Непосредственно управляемая (оперативно доступная) память (англ. on-line storage) — память, непосредственно доступная в данный момент времени центральному процессору. Автономная память — память, реализованная, например при помощи службы внешних носителей в Windows 2000, предусматривающей оперативное управление библиотеками носителей и устройствами с автоматической подачей дисков, облегчающей использование съёмных носителей типа магнитных лент и съёмных дисков, магнитных или оптических.

Организация хранения данных и алгоритмы доступа к ним

Повторяет классификацию структур данных:

  • Адресуемая память — адресация осуществляется по местоположению данных.
  • Ассоциативная память (англ. associative memory, content-addressable memory, CAM) — адресация осуществляется по содержанию данных, а не по их местоположению.
  • Магазинная (стековая) память (англ. pushdown storage) — реализация стека.
  • Матричная память (англ. matrix storage) — ячейки памяти расположены так, что доступ к ним осуществляется по двум или более координатам.
  • Объектная память (англ. object storage) — память, система управления которой ориентирована на хранение объектов. При этом каждый объект характеризуется типом и размером записи.
  • Семантическая память (англ. semantic storage) — данные размещаются и списываются в соответствии с некоторой структурой понятийных признаков.

Физические принципы

Эта классификация повторяет соответствующую классификацию ЗУ.

Вид Среда, хранящая информацию Принцип чтения/записи Примеры
Полупроводниковая память (англ. semiconductor storage) сформированные в полупроводнике элементы, имеющие 2 устойчивых состояния с различными электрическими параметрами включение в электрическую цепь SRAM, DRAM, EEPROM, Flash-память
Магнитная память (англ. magnetic storage) Намагниченность участков ферромагнитного материала (доменов) Магнитная запись Магнитная лента, магнитный диск, магнитная карта
Оптическая память (англ. optical storage, laser storage) последовательность участков (питов), отражающих или рассеивающих свет чтение: отражение либо рассеяние лазерного луча от питов;запись: точечный нагрев, изменяющий свойства отражающего слоя CD-диск, DVD, Blu-ray, HD DVD
Магнитооптическая память (англ. magnetooptics storage) показатель преломления участков информационного слоя чтение: преломление и отражение луча лазера запись: точечный нагрев и электромагнитный импульс CD-MO, Fujitsu DynaMO
Магниторезистивная память с произвольным доступом (англ. Spin Torque Transfer Random Access Memory, STT-RAM) магнитные домены В STT-RAM электрическое поле воздействует на микромагниты, заставляя их менять направление магнитного поля (спин). В свою очередь направление магнитного поля (справа — налево или сверху — вниз) вызывает изменение в сопротивлении (логические 0 и 1). MRAM
Память с изменением фазового состояния молекулы халькогенида использует изменение фазового состояния халькогенида — вещества, способного под воздействием нагрева и электрических полей переходить из непроводящего аморфного состояния (1) в проводящее кристаллическое (0). В ней применены диоды вертикального типа и трехмерная кристаллическая структура. Не требует предварительного удаления старых данных перед записью новых, не требует электропитания для сохранения своего состояния[1] PRAM
Ёмкостная память (англ. capacitor storage) молекулы халькогенида (chalcogenide) подача электрического напряжения на обкладки DRAM

Разновидности полупроводниковой памяти

  • NOR
  • NAND
  • NVRAM
  • SRAM
  • DRAM
  • FB-DIMM
  • EEPROM
  • Flash

Разновидности магнитной памяти

  • Память на магнитной ленте (англ. magnetic tape memory) — представляет собой пластиковую узкую ленту с магнитным покрытием и механизм с блоком головок записи-воспроизведения (БГЗВ). Лента намотана на бобину, и последовательно протягивается лентопротяжным механизмом (ЛПМ) возле БГЗВ. Запись производится перемагничиванием частиц магнитного слоя ленты при прохождении их возле зазора головки записи. Считывание записанной информации происходит при прохождении намагниченного ранее участка плёнки возле зазора головки воспроизведения.
  • Память на магнитных дисках (англ. magnetic disk memory) — представляет собой круглый пластиковый диск с магнитным покрытием и механизм с БГЗВ. Данные при этом наносятся радиально, при вращении диска вокруг своей оси и радиальном сдвиге БГЗВ на шаг головки. Запись производится перемагничиванием частиц магнитного слоя диска при прохождении их возле зазора головки записи. Считывание записанной информации происходит при прохождении намагниченного ранее участка возле зазора головки воспроизведения.
  • Память на магнитной проволоке (англ. plated wire memory) Использовалась в магнитофонах до магнитной ленты. В настоящее время по этому принципу конструируется большинство авиационных т. н. «чёрных ящиков» — данный носитель имеет наиболее высокую устойчивость к внешним воздействиям и высокую сохранность даже при повреждениях в аварийных ситуациях.
  • Ферритовая память (англ. core storage) — ячейка представляет собой ферритовый сердечник, изменение состояния которого (перемагничивание) происходит при пропускании тока через намотанный на него проводник. В настоящее время имеет ограниченное применение, в основном в военной сфере.

Разновидности оптической памяти

Фазоинверсная память (англ. Phase Change Rewritable storage, PCR) — оптическая память, в которой рабочий (отражающий) слой выполнен из полимерного вещества, способного при нагреве менять фазовое состояние (кристаллическое↔аморфное) и отражающие характеристики в зависимости от режима нагрева. Применяется в перезаписываемых оптических дисках (CD-RW, DVD-RW).

Редко используемые, устаревшие и экспериментальные виды

Вид Описание
Акустическая память использует замкнутые акустические линии задержки
Запоминающая электронно-лучевая трубка Использует свойство вторичной эмиссии люминофора
Трековая память базируется на открытых не так давно спинтронных эффектах, в частности на использовании спинового тока для перемещения наноразмерных магнитных объектов — доменных стенок — в пределах магнитных нанопроволок. Под действием такого тока доменные стенки бегут друг за другом по этой проволоке, словно бегуны по спринтерской дорожке (треку)[2]
Голографическая память использует пространственную графическую информацию, отображаемую в виде интерференционных структур
Криогенная память использует сверхпроводящие материалы
Сегнетоэлектрическая память Статическая оперативная память с произвольным доступом, ячейки которой сохраняют информацию, используя сегнетоэлектрический эффект. Исследованиями в этом направлении занимаются фирмы Hitachi совместно с Ramtron, Matsushita с фирмой Symetrix. По сравнению с флеш-памятью, ячейки FRAM практически не деградируют — гарантируется до {10}^{10} циклов перезаписи
Молекулярная память Использует технологию атомной туннельной микроскопии. Носителями информации являются специальные виды плёнок. Головки, считывающие данные, сканируют поверхность плёнки. Их чувствительность позволяет определять наличие или отсутствие в молекулах отдельных атомов, на чём и основан принцип записи-считывания данных. В середине 1999 года эта технология была продемонстрирована компанией Nanochip. В основе архитектуры устройств записи-считывания лежит технология MARE (Molecular Array Read-Write Engine). Были достигнуты следующие показатели по плотности упаковки: около 40 Гбит/см² в устройствах чтения/записи и 128 Гбит/см² в устройствах с однократной записью, что в 6 раз превосходило тогдашние экспериментальные образцы магнитных дисков и более чем в 25 раз — серийные модели. Достигнутая на 2008 год скорость записи и чтения не позволяет говорить о массовом применении этой технологии
Электростатическая память Носителями данных являются накопленные заряды статического электричества на поверхности диэлектрика.

Примечание

  1. ↑ PRAM - "совершенная" память от Samsung [Электронный ресурс] : Daily Digital Digest : — Режим доступа: http://www.3dnews.ru/185033
  2. ↑ Элементы — новости науки: Магнитная память «на беговой дорожке»: быстро, дешево и надежно [Электронный ресурс] : Элементы большой науки: — Режим доступа: http://elementy.ru/news/430720?page_design=print

ru.bmstu.wiki

Компьютерная память

Сегодня я хочу поговорить про виды компьютерной памяти. Частично они уже упоминались в статье про скорость компьютера, но были раскрыты там не полностью. А сейчас, когда все больше набирают популярность так называемые SSD-диски, самое время разобраться с типами компьютерной памяти и различиями между ними.

Я начну с простых вещей, но не торопитесь бросать статью. Закончу я различиями в типах flash-памяти - думаю, об этом мало кто осведомлен.

Оперативная память

Оперативная память - память энергозависимая. При выключении электричества все данные в ней теряются. Оперативная память - самая быстрая и самая дорогая среди активно используемых видов памяти. В любом случае, она стоит в стороне от прочих видов памяти, и мы не будем долго на ней останавливаться.

Жесткие диски

На жестких дисках (или HDD) мы обычно храним наши данные, и эти самые жесткие диски действительно содержат в себе диски. Эти диски вращаются; чем быстрее, тем быстрее происходит запись и чтение данных. Естественно, существует некоторый допустимый лимит скорости.

Для дисков для ноутбуков стандартом скорости сейчас является 5400 или 7200 rpm (оборотов в минуту), для стационарных компьютеров - 7200 или 10000. Для серверов возможны б`ольшие значения.

Жесткие диски выпускаются в коробках стандартного размера (форм-фактора) - 2.5 или 3.5 дюймов.

Достоинством жесткого диска является его долговечность и цена, недостатком - скорость чтения-записи. Причем, эта скорость может существенно зависеть, от того, последовательно или случайно вы считываете данные. Диск постоянно вращается, и если вам нужны данные из разных точек диска, то вам постоянно придется ждать, пока он повернется нужной стороной. Конечно, все это - малые доли секунды, но они накапливаются, когда речь идет о больших объемах данных. Но как и все носители информации, в какой-то момент жесткие диски начинают ломаться. Если вы подозреваете, что с вшим диском что-то не так, необходимо срочно произвести диагностику жесткого диска, иначе вы рискуете потерять все данные.

Компакт-диски

В стороне стоят все реже сейчас используемые компакт-диски - одноразовые (CD-ROM), и другие их разновидности. Особенность такого диска заключается в том, что данные, по сути, находятся "на поверхности" - чтение и запись происходят при помощи лазерного луча, направляемого на вращающийся диск. Компакт-диски имеют малый объем и низкую скорость работы, совершенно не подходят для регулярной перезаписи.

Flash-память

Еще одна разновидность памяти для компьютеров - Flash. Она бывает совершенно разной. И, на самом деле, термин Flash прижился совершенно не к тому, к чему он применялся изначально. Flash, вспышка, мгновенный доступ - речь шла о первом поколении Flash-памяти - микросхемам NOR. Такие микросхемы являются плоскими и представляют собой двумерную решетку ячеек, хранящих информацию. К ним действительно возможен мгновенный доступ в любой момент, индивидуально к любой ячейке. В связи с этим даже программы можно запускать с таких устройств без предварительной загрузки в оперативную память.

Основной недостаток NOR-памяти - то, что ее очень мало. Двумерная структура не позволяет хранить много данных. Поэтому сейчас NOR-флешки практически вытеснены NAND-флешками.

"Флешки" и карты памяти

Наши любимые флешки, подключаемые по USB, карты памяти в мобильных устройствах, все они, в своем большинстве, используют NAND-память. В отличии от памяти NOR, она представляет собой трехмерную решетку, и, соответственно, способна на ограниченном объеме хранить сильно больше данных.

Но не все так просто. NAND-память тоже бывает двух типов - SLC (Single-Level Cell) и MLC (Multi-Level Cell). В первом случае каждая ячейка хранит бит информации, да или нет, наличие или отсутствие напряжения. Во втором - несколько вариантов, обычно 4 или 8. Много - не значит хорошо. Конечно, такая память выходит дешевле, но она изнашивается существенно быстрее. MLC поддерживает порядка 10 тысяч операций перезаписи на ячейку, SLC - порядка 100 тысяч. SLC-память работает ощутимо быстрее, чем MLC.

К сожалению, производители флешек не пишут, какой чип находится внутри. Да и определить это, не разбирая флешку, достаточно сложно, хотя и возможно специализированными программами. Кроме того, часто случаются ситуации, когда сначала выпускается серия SLC-флешек, а далее под той же маркой идут MLC. Кого заинтересовало, читайте более подробное обсуждение на форуме ixbt.

SSD

SSD = solid state drive - твердотельные накопители. В терминах существует некоторая путаница, так как, по сути, все флешки относятся к этому разряду - к накопителям данных, не имеющих вращающихся частей. Тем не менее, под аббревиатурой SSD принято подразумевать коробочки формата HDD, но имеющие внутри совершенно другую начинку.

Второе недоразумение - SSD называют дисками, поскольку они имеют такой же внешний вид. Но никаких дисков в SSD нет.

В третьих, следует отметить, что принципиальных отличий у SSD и флешек нет. И то, и то, это - NAND-память. Но:

  • Флешки подключаются по USB, а SSD - обычно встраиваются в компьютеры, подключаются по интерфейсу SATA, что повышает скорость и качество обмена данными.
  • В SSD используется SLC-вид flash-памяти, а в флешках - MLC (в большинстве случаев). Тем самым, SSD намного надежнее и долговечней.
  • SSD имеют больший физический размер, что приводит и к большему "дисковому" пространству. От увеличения размера они также становятся более надежными - система может более грамотно перераспределять нагрузку записи между ячейками.
  • В SSD устанавливается более продвинутые версии контроллеров для работы с памятью, что улучшает производительность.

Гибридные диски

Гибридный диск соединяет в себе HDD И SSD. Кроме того, в нем содержится специальный микропроцессор, анализирующий, какие данные используются более часто. Эти данные дублируются на HDD и SSD, большая же часть данных живет только на жестком диске. Пока они не слишком распространены (наиболее известен Seagate Momentus XT), но у этой технологии есть все перспективы!

Немного экзотики

И напоследок отмечу очень странные объекты - диски Gigabyte i-RAM. Внутри обычной "дисковой" коробочки находятся слоты оперативной памяти. Кроме того, внутри содержится аккумулятор, позволяющий этой памяти выдерживать какое-то время отсутствие электричества. Устройство получилось очень дорогим, и потому мало востребованным.

Please enable JavaScript to view the comments powered by Disqus. comments powered by

it.sander.su

Виды компьютерной памяти

История

История появления первых вычислительных машин уходит в далекое пошлое. Так, еще

в XVII веке немецким ученым В.Шиккардом была изобретена вычислительная машина,

которая выполняла четыре вычислительных действия, а также накапливала

промежуточные результаты вычислений. В 1834 году английский ученый Ч.Беббедж

создал вычислительную машину, названную им аналитической, которая имела

вычислительное устройство, память и элементы автоматического управления

вычислительным процессором.

В конце XIX века американский изобретатель Г.Голле Рит сконструировал первые

перфорационные машины, которые выполняли сортировальные и некоторые

вычислительные операции.

В нашей стране в 1930-1950 гг. были достигнуты значительные успехи в области

разработки средств вычислительной техники. В этот период были созданы полные

комплекты перфорационных вычислительных машин, а также различные аналоговые

вычислительные машины и моделирующие устройства.

Перспективы развития ОП

Память компьютера организована в виде множества ячеек, в которых могут храниться

значения; каждая ячейка обозначается адресом. Размеры этих ячеек и, собственно,

типы значений, которые могут в них храниться, отличаются у разных компьютеров.

Некоторые старые компьютеры имели очень большой размер ячеек, иногда до 64К бит

в каждой ячейке. Эти большие ячейки назывались "словами". Супер-компьютеры Крей

и компьютер Юниварк ориентированы на работу со словами.

Трудность работы со словами большой длины заключается в том, что обычно

программы работают не с целыми словами, а с их частями. Поэтому большинство

современных компьютеров, и в том числе все персональные компьютеры, используют

значительно меньшей размер ячейки памяти, состоящей всего из 8 бит или "байта":

байт - это очень удобная единица информации, отчасти потому, что он позволяет

хранить код одной буквы алфавита или одного символа. Поскольку символ занимает в

точности один байт, термин "байт" и "символ" часто используются в одном и том же

смысле.

Так как IBM/PC использует ячейки памяти длиной 8 бит или 1 байт, в памяти могут

храниться значения, которые можно выразить восемью битами. Это значение до двух

в восьмой степени или 256. Смысл величины, записанной в ячейку памяти, зависит

от способа ее использования> Можно считать, что байт содержит код алфавитного

символа - так называемый код ASCII. В то же время его можно рассматривать и как

число. Все 256 положительные числа от 0 до 255, либо как числа со знаками в

диапазоне от -128 до + 127. Кроме того, байт может как часть большого объема

данных, например, строки символов или двухбайтного числа.

Для удобства манипулирования символьными данными компьютеру необходимо чтобы

коды символов преобразовались в байтовые величины. Большинство компьютеров,

включая IBM/PC, используют код ASCII, американский стандартный код для обмена

информации. Большинство компьютеров фирмы "IBM" используют другую схему

кодирование символов, называющуюся EBCDIC; системы ASCII и EBSDIC организованы

по-разному, но перекодировка из одной системы в другую большого труда не

составляет.

Всем компьютерам требуется память нескольких видов. Память требуется на каждом

шагу выполнения программ. Память нужна как для использования данных, так и для

хранения результатов. Она необходима для взаимодействия с периферией компьютера

и даже для поддержания образа, видимого на экране. В компьютерных системах

работа с памятью основывается на очень простых концепциях. В принципе, все, что

требуется от компьютерной памяти, - это сохранять один бит информации так, чтобы

потом он мог быть извлечен оттуда.

Организация памяти

Одним из основных элементов компьютера, позволяющим ему нормально

функционировать, является память. Внутренняя память компьютера - это место

хранения информации, с которой онработает. Внутренняя память компьютера является

временным рабочим пространством; в отличие от нее внешняя память, такая как файл

на дискете, предназначена для долговременного хранения информации. Информация во

внутренней памяти не сохраняется при выключении питания.

Каждая ячейка памяти имеет адрес, который используется для ее нахождения. Адреса

- это числа, начиная с нуля для первой ячейки, увеличивающиеся по направлению к

последней ячейке памяти. Поскольку адреса - это те же числа, компьютер может

использовать арифметические операции для вычисления адресов памяти.

Архитектура каждого компьютера накладывает собственные ограничения на величину

адресов. Наибольший возможный адрес определяет объем адресного пространства

компьютера или то, какой объем памяти он может использовать. Обычно компьютер

использует память меньшего объема, чем допускается его возможностями адресации.

Если архитектура компьютера предусматривает наибольшее адресное пространство,

это накладывает суровые ограничения на возможности такого компьютера

IBM/PC использует возможности адресации микропроцессора 8088 полностью. Адреса в

8088 имеют длину 20 бит, следовательно, процессор позволяет адресовать два в

двадцатой степени байта или 1024 К.

Такое большое адресное пространство позволяет свободно использовать ресурсы

памяти для специальных целей. Большая часть арифметических операций, которые

может выполнять микропроцессор 8088, ограничивается манипуляцией с 16-разрядными

числами, что дает диапазон значений от 0 до 64 К. Поскольку полный адрес должен

состоять из 20 разрядов, необходимо было разработать способ управления 20

разрядами. Решение было найдено путем использования принципа сегментированной

адресации.

Для работы с сегментированными адресами микропроцессор 8088 имеет специальные

регистры сегментов, предназначенные для хранения сегментной части адресов.

Загрузив в регистр сегмента некоторое значение, можно адресовать следующие за

ним 64К ячеек памяти. Без изменения значения в регистре сегмента компьютер может

работать только с 64К байтами из общего адресного пространства в 1.024К. Путем

изменения значения в регистре сегмента можно адресовать любую ячейку памяти.

Чтобы иметь возможность в каждый момент времени работать более чем с 64К памяти,

в микропроцессоре 8088 предусмотрены четыре различных регистра сегмента, каждый

из которых имеет особое назначение. Память компьютера используется для различных

целей - часть ее занимает программа, другая часть используется для хранения

данных, с которыми в данный момент работает программа. Поэтому два регистра

сегмента выделены для программы и для данных. Для указания базового адреса

программного или кодового сегмента используется регистр DC. Еще одна область

памяти, используемая для специальных целей, называется стеком, и ее адрес

указывается регистром стека SS. Для обеспечения дополнительных возможностей

адресации имеется регистр дополнительного сегмента (или сегмента расширения),

ES.

Когда программа подготавливается к выполнению, операционная система, такая как

DOS, выбирает ячейки каких разделов будут использоваться для размещения кодовой

части программ, данных и стека в регистры сегментов CS, DS и SS заносятся адреса

этих ячеек. При выполнении программы адреса в этих регистрах позволяют находить

нужные ячейки памяти.

DOS и языковые процессоры используют программные соглашения, которые позволяют

увеличить объем программ практически неограниченно, в то время как их адресуемая

область данных ограничена 64К. Вы легко заметите это ограничение, работая с

Паскалем или компилятором Бейсика. Для "встроенного" интерпретатора Бейсика для

IBM/PC собственно выполняемой программой является сам интерпретатор, а то, что

мы считаем своей программой, на Бейсике фактически является частью данных

интерпретатора. Таким образом, для интерпретатора Бейсика суммарный объем

кодовой части и данных Вашей программы не должен превышать 64К, которые

позволяет адресовать регистр данных DS.

Как Бейсик, так и Паскаль, лишь до определенной степени позволяют манипулировать

сегментированными адресами. Вы можете непосредственно изменять содержимое

регистров CS, DS, SS и ES - языковой процессор должен управлять этими

регистрами, иначе все может совершенно запутаться. Однако, определенный способ

использования в программах сегментированной адресации все же имеется.

Паскаль разрешает использование сегментированной адресации, правда, в более

унифицированном и гибком виде, чем Бейсик. На Паскале можно определить

переменную как сегментированный адрес, например:

Var пример_адреса : adasmem,

а затем непосредственно задать его сегментную и относительную части ('.s' и

'.r', соответственно):

пример_адреса.s : = # 2222;

пример_адреса.r : = # 3333;

Когда все эти присваивания выполнены, можно осуществлять доступ к памяти с

помощью указателя сегментированного адреса:

x : = пример_адреса^;

if(chr(x)> = "а") and (chr(x)< = "z") then

пример_адреса^ : = x - 32;

Имея адресное пространство свыше миллиона байт IBM/PC позволяет более удобно и

более гибко использовать память, чем большинство других, меньших персональных

компьютеров. С одной стороны, резервирование определенных ячеек памяти может

наложить ограничение на возможные применения компьютера. В IBM/PC резервируется

несколько областей в верхних адресах памяти. Эти области имеют особое значение,

а все нижние адреса оставлены для свободного использования. Таким образом,

сочетаются достоинства использования зарезервированных блоков памяти и

сохранения как можно большего объема памяти для свободного использования.

Верхняя четверть общего объема памяти, начиная с ячейки C 000 и до конца,

mirznanii.com