Оперативная память персонального компьютера, её разновидности и свойства. Оперативная память пк


Оперативная память персонального компьютера, её разновидности и свойства

Под оперативной памятью (ОЗУ, RAM) принято понимать относительно быструю энергозависимую память компьютера, посредствам которой осуществляется большая часть операций по обмену информацией между устройствами. Данная разновидность памяти является энергозависимым, а потому в случае отключения питания, все имеющиеся в ней данные стираются.

Содержание статьи по разделам:

Из этой статьи вы узнаете об основных понятиях и возможностях оперативной памяти для персональных компьютеров.

По сути, оперативную память можно сравнить с хранилищем потоков данных, ожидающих свою очередь для последующей обработки их процессором. Связь всех устройств с оперативной памятью производится посредствам системной шины, при этом с самой памятью обмен происходит при помощи кэша или напрямую.

RAM является памятью с произвольным доступом, а потому данный вид памяти может произвести прямое обращение к необходимому блоку в обход остальным. Скорость произвольного доступа остается неизменной независимо от местоположения нужных данных, что является плюсом.

Представлена оперативная память в виде отдельных модулей, которые можно менять и дополнять (как в ПК, например), а также же в виде отдельных блоков устройств или чипов (как в микроконтроллёрах).

Тип памяти ROM

Память типа ROM (ПЗУ) позволяет хранить данные, при этом возможностью их видоизменять она не располагает. По этой причине данный тип памяти применяется лишь для чтения информации. ROM также порой относят к категории энергонезависимой памяти, поскольку любая информация, записанная в нее, сохраняется в случае отключения питания. По этой причине ROM является хранилищем команд запуска компьютера, иными словами — программного обеспечения, загружаемого систему.

Не стоит говорить о ROM и оперативной памяти, как о противоположных понятиях, поскольку, по сути, ROM является частью системы под названием оперативная память. Проще говоря, часть адресного пространства оперативная память отводит под ROM. Данное разделение вызвано потребностью во временном хранении программного обеспечения, предназначенного для загрузки операционной системы.

Основной код BIOS помещен в микросхемы ROM, которыми снабжена системная плата и плата адаптеров. Они предназначены для хранения вспомогательных подпрограмм системы ввода-вывода, а также драйверов, необходимых для той или иной платы, особенно это актуально для плат, запуск которых должен производиться на ранней стадии загрузки, примером является видеоадаптер.

Тип памяти DRAM

Тип памяти DRAM является энергозависимой полупроводниковой памятью, обладающей прямым доступом (RAM). Помимо этого DRAM является запоминающим устройством, широко используемым в качестве RAM в выпускаемых сегодня компьютерах.

Составляют память DRAM ячейки из полупроводникового материала, в каждой ячейки хранится определённый объём информации (до 4 бит). В совокупности эти ячейки напоминают «прямоугольник», который включает определённое количество строк и столбцов. Одна такая прямоугольная конструкция называется страницей, тогда как множество страниц именуется банком. Каждый набор вышеуказанных ячеек можно условно поделить на области.

В качестве запоминающего устройства DRAM-память является модулем, который состоит из электрической платы с микросхемами и разъёма, необходимого для взаимодействия модуля и материнской платы.

Что такое кэш память SRAM

SRAM – обозначение статической оперативной памяти полностью отличной от других типов памяти. Статической эта память называется потому, что главным ее отличием от динамической оперативной памяти является то, что она не нуждается в периодической регенерации во время сохранения своего содержимого. Относительно быстродействия у SRAM более высокие показатели, нежели у динамической оперативной памяти.

Несмотря на то, что быстродействие SRAM гораздо выше, чем у динамической оперативной памяти, все же имеются два негативных фактора, это то, что ее плотность ниже, а стоимость при этом выше. Под более низкой плотностью подразумевается то, что у SRAM большие габариты при незначительной информационной емкости. Все эти факторы не позволяют использовать SRAM, как оперативную память ПК.

Чтобы избежать существенного роста стоимости высокоскоростная память SRAM устанавливается лишь в небольшом объеме в качестве кэша. Во время работы кэш-память использует тактовые частоты, близкие или даже равные тактовым частотам процессора. Также стоит упомянуть о том, что именно этот тип памяти использует процессор во время чтения и записи данных.

Типы и производительность ОЗУ

Чтобы избежать путаницы в вопросе производительности памяти, следует отметить следующие положения: единицей измерения самой производительности являются наносекунды, тогда как быстродействие процессоров измеряется в МГц и ГГц.

Наносекунда представляет собой одну миллиардную долю секунды, другими словами – это довольно короткий временной промежуток.

Как уже упоминалось выше, единицей измерения быстродействия микросхем памяти и системы в целом являются МГц (миллион тактов в секунду) и ГГц (миллиард тактов в секунду). Выпускаемые сегодня процессоры наделены тактовой частотой до 4 ГГц, однако гораздо положительней на их производительность влияет более развитая внутренняя архитектура (пример тому – наличие нескольких ядер).

В результате эволюции компьютеров с целью повысить эффективность обращения к памяти разработчики создавали разные уровни кэширования, которые в дальнейшем позволили производить перехват обращений процессора к основной памяти, скорость которой существенно ниже. Лишь недавно модулям памяти DDR, DDR2, DDR3 SDRAM удалось «догнать» показатели производительности шины процессора, что, в свою очередь, оказало положительный эффект на производительность памяти.

DDR SDRAM

Модельный ряд микросхем оперативной памяти довольно разнообразен, при этом сегодня зачастую в ПК используются лишь два вида памяти именуемых, как SDRAM и DDR SDRAM.

SDRAM представляет собой динамичную оперативную память, которая будучи в рабочем состоянии производит синхронизацию с шиной памяти. Сегодня имеют место быть две разновидности памяти SDRAM: РС 100 и РС 133. Так, РС 100 работает на частоте 100 МГц, а РС 133 – на частоте 133 МГц. На данный момент SDRAM-память встречается крайне редко, чаще всего лишь на компьютерах с процессором Pentium 3.

Уже с 2001 г. предпочтение отдается более совершенному стандарту памяти DDR SDRAM. В переводе с английского языка «DDR» означает «двойную скорость передачи информации», что является сущностью этой разновидности оперативной памяти. Работа DDR SDRAM предусматривает три тактовые частоты – 266, 333, 400 МГц. При этом следует учитывать, что разными фирмами-продавцами в строке-спецификации может быть указана, как тактовая частота, так и пропускная способность оперативной памяти, измеряемая в Мб/С.

DDR2

DDR2 SDRAM является вторым поколением синхронной динамической памяти с произвольным доступом и двойной скоростью передачи информации. Данная разновидность оперативной памяти используется в вычислительной технике также в качестве видеопамяти. Предшественником DDR2 SDRAM была память DDR SDRAM.

Уже в 2010 г. данный вид памяти был в существенной мере вытеснен памятью стандарта DDR3.

К основным отличиям DDR2 от DDR можно отнести вдвое большую частоту работы шины, благодаря которой буфер микросхемы памяти получает данные. При этом для обеспечения необходимого потока данные на шину передаются из 4-х мест одновременно.

DDR3

DDR3 SDRAM является синхронной динамической памятью третьего поколения с произвольным доступом и двойной скоростью передачи информации. Помимо того, что данная разновидность памяти используется в вычислительной технике в качестве оперативной, также ее можно использовать как видеопамять. Предшественником DDR3 была память DDR2 SDRAM. С приходом DDR3 предподкачка увеличилась до 8 бит.

DDR3 потребляет меньше энергии, нежели модули DDR2, этому способствует пониженное напряжение питания ячеек памяти. Понизить напряжение питания удалось благодаря использованию более тонкого технического процесса во время производства микросхем и благодаря использованию транзисторов с двойным затвором, это, в свою очередь, снизило утечку тока.

Также существует разновидность памяти DDR3L, у которой с ещё более низкое энергопотребление, доходящее до 1,35 В, что на 10 процентов меньше, чем у DDR3.

В 2012 г. стало известно о новой разработке — память DDR3L-RS, выпущенная для использования на смартфонах.

Модули SIMM, DIMM и RIMM

Изначально физически оперативная память представляла собой отдельные микросхемы (DIP), при этом платы таких систем, как IBM XT и АТ могли включать 36 разъемов, которые были предназначены для активации микросхем памяти. Со временем микросхемы памяти стали помещаться на отдельных платах, подключавшихся к разъемам шины.

Также к недостаткам данной организации можно отнести тот факт, что микросхемы периодически «выскакивали» из своих гнезд, благодаря чему компьютерная техника постоянно включалась и выключалась, следствием того был перегрев микросхем, что, в свою очередь, вызывало ошибку памяти. Устранялась данная проблема после того, как микросхема более плотно вставлялась в гнездо.

Решить эту неприятность также могло лишь непосредственное припаивание контактов микросхем к поверхности материнской платы или карты расширения. Однако когда один из модулей выходил из строя, его необходимо было вырезать и припаять новую микросхему. Из этого следовало, что микросхемы должны были одновременно припаиваться и легко заменяться. Данный принцип был применен в модулях SIMM.

Абсолютное большинство настольных систем в качестве альтернативы при установке отдельных микросхем памяти использует модули SIMM, DIMM, RIMM, которые представляют собой небольших размеров платы с микросхемами памяти, вставляемые в материнскую плату.

Объем и другие характеристики модулей памяти

Чем больше программ пользователь планирует запустить одновременно, тем больший ему понадобится объем модуля памяти. При этом следует помнить о том, что часть данного объема затрачивается на нужды системы. Так, например, комфортная работа на Windows XP предполагает наличие минимум 1Гб ОЗУ, а на Windows 7 – минимум 2Гб ОЗУ.

К другим характеристикам модулей памяти можно отнести тактовую частоту, пропускную способность и чип. Вышеуказанные характеристики являются зависимыми друг от друга, а потому определенная частота отвечает лишь определенной пропускной способности, и определенному чипу. Чем показатели частоты выше, тем выше скорость передачи данных. Также стоит заострить внимание на следующем положении: суммарная пропускная способность каждого модуля памяти не должна быть выше пропускной способности шины RAM на материнской плате, иначе память не раскроет весь свой потенциал. Еще нужно помнить о том, что материнскими платами поддерживаются разные типы чипов, а потому стоит приобретать лишь поддерживаемую память, поскольку, если этого не сделать, память будет работать медленней или вообще не будет работать.

Представление о банках памяти

Системная плата и модули памяти (DIP, SIMM, SIPP и DIMM) в совокупности организуют банки памяти. Иметь какое-то представление о принципах распределения памяти между банками и об их расположение на плате необходимо тогда, когда пользователь намеривается добавить в свой компьютер дополнительную микросхему памяти.

Помимо этого, посредствам диагностических программ можно вывести адрес байта или бита неисправной ячейки, которая в результате поможет выявить поврежденный банк памяти.

Зачастую разрядность банков совпадает с разрядностью шины данных процессора.

Быстродействие памяти при замене

В случае возникновения необходимости заменить вышедший из строя модуль или микросхему памяти, новому элементу необходимо соответствовать типу заменяемого модуля, при этом его время доступа должно быть меньше или равно соответствующему показателю неисправной детали. Таким образом, новый элемент вполне может обладать более высоким быстродействием.

Проблемы могут возникнуть во время использования микросхем или модулей, которые не соответствуют определенному перечню требований, примером является длительность циклов регенерации. Также негативным фактором считается несоответствие в разводках выводов, емкостях, разрядностях и конструкции.

В случае установки модулей памяти с более быстрым действием, на производительность это не оказывает положительного эффекта, так как частота обращаемой к ней системы остается неизменной. В системах, в которых используются модули DIMM, RIMM, считывание быстродействия производится посредствам специального ПЗУ SPD.

Производительность подобного рода систем можно повысить, установив более быстрые модули памяти.

Выбор модулей памяти

Чтобы увеличить объем памяти ПК необходимо установить дополнительные модули памяти на системную плату. Большая часть систем снабжена хотя бы одним незанятым слотом памяти, предназначенным для установки дополнительного модуля.

Некоторые высокопроизводительные системы нуждаются в установке двухканальной памяти, проще говоря — в двух идентичных модулях памяти.

Существует несколько положений, на которые нужно обратить внимание во время покупки модулей памяти. Часть их касается производства и распределения памяти, остальные же зависят от разновидности покупаемых модулей.

Большая часть компаний занимается производством модулей памяти, однако только некоторые из них выпускают микросхемы. При этом существует лишь несколько фирм, которые производят микросхемы памяти, покупая их уже другие компании, выпускают разнообразные модули памяти, такие как, например, DIMM, RIMM.

При замене модулей памяти

В случае, когда каждый разъем памяти системной платы занят, возникает необходимость в установке более емких модулей. Если системная плата располагает двумя разъемами DIMM (являющимися банками памяти для процессоров с х65), предусматривается возможность замены модулей на более емкие модули. Так, например, если в ПК установлено два модуля объемом 256 Мб, заменив один из них на модуль с 512 Мб, размер оперативной памяти в общей сложности, увеличится до 768 Мб.

Однако даже если модули памяти соответствуют количеству контактных выводов, это не является гарантией их работоспособности. На используемые модули памяти BIOS и микросхемы системной логики налагают определенного рода ограничения.

Об ошибках в оперативной памяти

Устранение ошибок памяти — довольно сложная задача, поскольку не во всех случаях выявление причин их возникновения является возможным. Зачастую пользователи считают, что причины всех сбоев сводятся к программному обеспечению, тогда, как на самом деле всему виной память.

Чтобы устранить ошибки пользователь должен иметь под рукой некоторые диагностические программы. Стоит отметить, что ряд ошибок памяти может быть выявлен одним приложением и остаться незамеченным для другого. Во время включения ПК BIOS производит проверку памяти. Чаще всего при покупке компьютера к нему прилагается диск, который содержит перечень специальных диагностических программ. Также сегодня рынок полон множеством других утилит для диагностики, которые содержат свои собственные методы тестирования памяти.

В сети Интернете при желании каждый пользователь может найти множество инструментов для диагностики памяти, примером являются:

• Memtest86;

• DocMemory Diagnostic;

• Microsoft Windows Memory Diagnostic.

www.white-windows.ru

Оперативная память компьютера

Как вы наверняка, знаете, любой компьютер состоит из трех основных компонентов –  процессора, памяти и устройств ввода-вывода. При этом оперативная память компьютера у многих пользователей является первым понятием, которое приходит на ум, когда речь заходит о памяти вообще.

Строго говоря, существует две разновидности памяти – постоянная и временная. И временная память компьютера – это и есть оперативная память плюс кэш-память CPU, о которой мы уже рассказывали в отдельной статье. 

Содержание статьи

Функции ОЗУ

Информация, которую содержит временная память, как можно догадаться, не сохраняется постоянно и после выключения питания компьютера бесследно исчезает, если, разумеется, пользователь не успел сохранить ее в постоянной, то есть, на жестком диске или каком-либо сменном носителе. Однако временная память имеет одно большое преимущество перед постоянной – это высокое быстродействие. В частности, оперативная память работает в несколько сот тысяч (!) раз быстрее, чем жесткий диск. Именно поэтому во временной памяти хранятся динамично меняющиеся данные и программы, которые запускаются в течение сессии работы операционной системы.

Оперативная память (которую также иногда называют ОЗУ, что означает «оперативное запоминающее устройство») является самым большим временным хранилищем данных в компьютере. По сравнению с кэш-памятью ОЗУ обладает гораздо большим объемом, но в то же время, и меньшим быстродействием. Однако быстродействие ОЗУ, тем не менее, вполне достаточно для выполнения текущих задач прикладных программ и операционной системы.

Принцип работы оперативной памяти

В настоящее время микросхемы ОЗУ изготавливаются на основе технологии динамической памяти (DRAM, или Dynamic Random Access Memory). Динамическая память, в отличие от статической, которая используется в кэш-памяти, имеет более простое устройство, и, соответственно ее цена на единицу объема гораздо ниже. Для хранения одной единицы информации (одного бита) в DRAM используется всего лишь один транзистор и один конденсатор.

Помимо этого, особенностью динамической памяти является ее постоянная потребность в периодической регенерации содержимого. Эта особенность обусловлена тем, что конденсаторы, обслуживающие ячейку памяти, очень быстро разряжаются, и поэтому через определенное время их содержимое необходимо прочитать и записать заново. Данная операция в современных микросхемах осуществляется автоматически через определенный промежуток времени, при помощи контроллера микросхемы памяти.

Максимальный объем доступной оперативной памяти, которую можно установить в системе, определяется разрядностью шины адреса процессора. С появлением 32-разрядных процессоров этот объем был равен 4 ГБ.  Современные 64-разрядные процессоры способны поддерживать адресное пространство ОЗУ в 16 ТБ. Это цифра представляется сейчас совершенно фантастической, но ведь когда-то и цифра в 4 ГБ для ОЗУ казалась абсолютно невероятной, а сегодня 32-разрядные системы уже уперлись в этот потолок, ограничивающий их возможности.

Как и в случае процессора, скорость работы ОЗУ во многом определяется ее тактовой частотой. Тактовая частота современных микросхем памяти типа DDR3 в среднем составляет примерно 1600 МГц.

Физически оперативная память представляет собой длинную и невысокую плату, к которой припаяны непосредственно микросхемы памяти. Эта плата вставляется в специальные слоты на материнской плате. В настоящее время наиболее распространены модули памяти форм-фактора DIMM (Dual In-line Memory Module или двухсторонний модуль памяти).

История развития микросхем

В эпоху господства компьютеров семейства XT/AT господствовали микросхемы памяти форм-фактора DIP. Эта память представляла собой отдельную микросхему, которую нужно было  вставлять в горизонтальном положении в специальный разъем на материнской плате. Оперативная память формата DIP, однако, имела несколько существенных недостатков. Во-первых, микросхема не очень крепко держалась в своем гнезде, и поэтому часть ее контактов могла не действовать, что приводило к ошибкам памяти. Кроме того, подобные микросхемы имели небольшую емкость и неэффективно использовали свободное пространство материнской платы.

Недостатки технологии DIP побудили конструкторов к разработке модулей памяти форм-фактора SIMM (Single-in-line Memory Module). Первые SIMM появились еще в системах AT. В отличие от DIP модули SIMM, как и современные DIMM, представляли собой длинные модульные платы, к которым были в один ряд прикреплены микросхемы памяти, и которые можно было вставлять в специальный разъем на материнской плате в вертикальном положении.

В разные годы выпускалось два типа SIMM – 8-разрядные SIMM c 30 контактами и более поздний вариант, впервые появившийся в системах на базе 486-х процессоров – 32 разрядные модули c 72-разъемами.

Модули SIMM необходимо было вставлять не как угодно, а таким образом, чтобы заполнялись так называемые банки памяти. Разрядность банка памяти соответствовала разрядности шины адреса процессора. Для заполнения банка памяти в компьютерах с 16-разрядной шиной минимальное количество модулей SIMM составляло два 8-разрядных модуля, а в компьютерах с 32-разрядной шиной их требовалось уже 4.

Модули типа SIMM стали выходить из употребления уже в системах на базе первого Pentium. Вместо них конструкторами был разработан модуль DIMM. Как можно догадаться из названия («двухсторонний модуль памяти»), этот модуль имеет два ряда контактов с обеих сторон, в то время, как в SIMM фактически был всего один ряд контактов.

Помимо этого, модуль DIMM отличается технологией изготовления самих микросхем устанавливаемых на нем. Если до появления DIMM использовались микросхемы типа EDO или FPM, то в DIMM используется более новая технология Synchronous DRAM. Кроме того, модули DIMM имеют встроенную микросхему контроля четности памяти.

Модуль DIMM первого поколения, в отличие от SIMM, имел 168 контактов, а также специальный ключ в разъеме, исключающий неправильную установку модуля.

Второе поколение DIMM, основанное на технологии DDR SDRAM, имело уже 184 контакта.  Следующие поколения – современные DDR2 и DDR3 могут похвастаться наличием 240 контактов.

Технология Double Data Rate Synchronous DRAM

Расскажем чуть подробнее о памяти технологии DDR SDRAM, которая стала настоящим технологическим прорывом и во многом предопределила дальнейшее развитие технологий оперативной памяти.

Модули ОЗУ типа DDR SDRAM были разработаны в начале 2000-х гг. и работали на тактовой частоте в 266 МГц. Первые модули DDR SDRAM появились в системах на базе AMD Athlon, а потом и на Pentium 4. По сравнению с предшественниками, микросхема DDR SDRAM позволила удвоить скорость считывания данных на одной и той же  тактовой частоте, то есть скорость работы DDR SDRAM на частоте 100 МГц была эквивалентна работе простых микросхем Synchronous DRAM на частоте в 200 МГц. Удвоение скорости достигалось в DDR SDRAM за счет усовершенствования методики передачи сигнала. В преемниках  технологии DDR SDRAM, технологиях DDR2 и DDR3 объем обрабатываемой за такт информации еще более увеличился.

Принципы работы современных микросхем памяти.

Память Rambus

Также стоит рассказать немного об одной интересной технологии ОЗУ, которая наделала в свое время много шума, однако так и не стала массовой. Речь идет о модулях памяти типа RIMM (Rambus in-line memory module), которые были разработаны компанией Rambus совместно с Intel в конце 90-х гг.

В основу модулей памяти RIMM Rambus положила технологию памяти, которая до этого использовалась в некоторых видеокартах. Технология RIMM до появления DIMM и DDR SDRAM казалась многообещающей и позиционировалась Rambus  как замена всем старым форматам памяти. В частности, модули памяти Rambus RIMM в несколько раз превосходили своих конкурентов, предлагая пользователем скорость передачи данных в 1600 МБ/с при тактовой частоте в 400 МГц.

Тем не менее, модули памяти типа RIMM, оказались не лишены и нескольких недостатков. Во-первых, модули RIMM были довольно велики по размеру. Кроме того модули RIMM выделяли слишком много тепла и нуждались в средствах охлаждения. Ну и самое главное, память типа RIMM была отнюдь не дешева.

Поэтому на сегодняшний день ОЗУ, основанное на модулях памяти форм-фактора RIMM, можно встретить лишь в некоторых серверах, а не в персональных компьютерах.

Заключение

Оперативная память, или оперативное запоминающее устройство персонального компьютера – один из важнейших его компонентов. Основное назначение оперативной памяти – временное хранение текущих данных. Оперативная память предоставляет необходимое пространство для работы прикладных программ  и операционной системы. От объема и скорости работы модулей оперативной памяти во многом зависит скорость работы и производительность всего компьютера.

Порекомендуйте Друзьям статью:

biosgid.ru

Оперативная память компьютера (ОЗУ, RAM)

Сокращенно оперативную память компьютера называют ОЗУ (оперативное запоминающее устройство) или RAM (random access memory — память с произвольным доступом).

Название RAM более точно отражает строение и назначение устройства.

Назначение ОЗУ

  • Хранение данных и команд для дальнейшей их передачи процессору для обработки. Информация может поступать из оперативной памяти не сразу на обработку процессору, а в более быструю, чем ОЗУ, кэш-память процессора.
  • Хранение результатов вычислений, произведенных процессором.
  • Считывание (или запись) содержимого ячеек.

Особенности работы ОЗУ

Оперативная память может сохранять данные лишь при включенном компьютере. Поэтому при его выключении обрабатываемые данные следует сохранять на жестком диске или другом носителе информации. При запуске программ информация поступает в ОЗУ, например, с жесткого диска компьютера. Пока идет работа с программой она присутствует в оперативной памяти (обычно). Как только работа с ней закончена, данные перезаписываются на жесткий диск. Другими словами, потоки информации в оперативной памяти очень динамичны.

ОЗУ представляет собой запоминающее устройство с произвольным доступом. Это означает, что прочитать/записать данные можно из любой ячейки ОЗУ в любой момент времени. Для сравнения, например, магнитная лента является запоминающим устройством с последовательным доступом.

Логическое устройство оперативной памяти

Оперативная память состоит их ячеек, каждая из которых имеет свой собственный адрес. Все ячейки содержат одинаковое число бит. Соседние ячейки имеют последовательные адреса. Адреса памяти также как и данные выражаются в двоичных числах.

Обычно одна ячейка содержит 1 байт информации (8 бит, то же самое, что 8 разрядов) и является минимальной единицей информации, к которой возможно обращение. Однако многие команды работают с так называемыми словами. Слово представляет собой область памяти, состоящую из 4 или 8 байт (возможны другие варианты).

Типы оперативной памяти

Принято выделять два вида оперативной памяти: статическую (SRAM) и динамическую (DRAM). SRAM используется в качестве кэш-памяти процессора, а DRAM - непосредственно в роли оперативной памяти компьютера.

SRAM состоит из триггеров. Триггеры могут находиться лишь в двух состояниях: «включен» или «выключен» (хранение бита). Триггер не хранит заряд, поэтому переключение между состояниями происходит очень быстро. Однако триггеры требуют более сложную технологию производства. Это неминуемо отражается на цене устройства. Во-вторых, триггер, состоящий из группы транзисторов и связей между ними, занимает много места (на микроуровне), в результате SRAM получается достаточно большим устройством.

В DRAM нет триггеров, а бит сохраняется за счет использования одного транзистора и одного конденсатора. Получается дешевле и компактней. Однако конденсаторы хранят заряд, а процесс зарядки-разрядки более длительный, чем переключение триггера. Как следствие, DRAM работает медленнее. Второй минус – это самопроизвольная разрядка конденсаторов. Для поддержания заряда его регенерируют через определенные промежутки времени, на что тратится дополнительное время.

Вид модуля оперативной памяти

Внешне оперативная память персонального компьютера представляет собой модуль из микросхем (8 или 16 штук) на печатной плате. Модуль вставляется в специальный разъем на материнской плате.

По конструкции модули оперативной памяти для персональных компьютеров делят на SIMM (одностороннее расположение выводов) и DIMM (двустороннее расположение выводов). DIMM обладает большей скоростью передачи данных, чем SIMM. В настоящее время преимущественно выпускаются DIMM-модули.

Основными характеристиками ОЗУ являются информационная емкость и быстродействие. Емкость оперативной памяти на сегодняшний день выражается в гигабайтах.

inf1.info

Оперативная память персонального компьютера

Реферат

По дисциплине: «Конструкция персонального компьютера»

На тему: «Оперативная память персонального компьютера»

Введение

Оперативная память - в информатике - память, часть системы памяти ЭВМ, в которую процессор может обратиться за одну операцию. Предназначена для временного хранения данных и команд, необходимых процессору для выполнения им операций. Оперативная память передаёт процессору данные непосредственно, либо через кэш-память. Каждая ячейка оперативной памяти имеет свой индивидуальный адрес.

Простейшая схема взаимодействия оперативной памяти с ЦП

Оперативная память персональных компьютеров сегодня, как и десять лет тому назад, строится на базе относительно недорогой динамической памяти - DRAM (Dynamic Random Access Memory). Множество поколений интерфейсной логики, сменилось за это время. Эволюция носила ярко выраженный преемственный характер - каждое новое поколение памяти практически полностью наследовало архитектуру предыдущего, включая, в том числе, и свойственные ему ограничения. Ядро же памяти (за исключением совершенствования проектных норм таких, например, как степень интеграции) и вовсе не претерпевало никаких принципиальных изменений. Даже "революционный" Rambus Direct RDRAM ничего подлинного революционного в себе не содержит и хорошо вписывается в общее "генеалогическое" древо развития памяти.

Поэтому, устройство и принципы функционирования оперативной памяти лучше всего изучать от самых старых моделей памяти до самых современных разработок.

Устройство и принципы функционирования оперативной памяти
Ядро микросхемы динамической памяти состоит из множества ячеек, каждая из которых хранит всего один бит информации. На физическом уровне ячейки объединяются в прямоугольную матрицу, горизонтальные линейки которой называются строками (ROW), а вертикальные - столбцами (Column) или страницами (Page).
Линейки представляют собой обыкновенные проводники, на пересечении которых находится ячейки - несложное устройство, состоящее из одного транзистора и одного конденсатора.
Конденсатору отводится роль непосредственного хранителя информации. Объем, которого составляет - всего один бит. Отсутствие заряда на обкладках соответствует логическому нулю, а его наличие - логической единице. Транзистор же играет роль "ключа", удерживающего конденсатор от разряда. В спокойном состоянии транзистор закрыт, но, стоит подать на соответствующую строку матрицы электрический сигнал, он откроется, соединяя обкладку конденсатора с соответствующим ей столбцом.
Чувствительный усилитель (sense amp), подключенный к каждому из столбцов матрицы, реагируя на слабый поток электронов, устремившихся через открытые транзисторы с обкладок конденсаторов, считывает всю страницу целиком. Именно страница является минимальной порцией обмена с ядром динамической памяти. Чтение/запись отдельно взятой ячейки невозможно! Действительно, открытие одной строки приводит к открытию всех, подключенных к ней транзисторов, а, следовательно, - разряду закрепленных за этими транзисторами конденсаторов.
Чтение ячейки деструктивно по своей природе, поскольку sense amp (чувствительный усилитель) разряжает конденсатор в процессе считывания его заряда. Благодаря этому динамическая память представляет собой память разового действия. Для борьбы с потери памяти прибегают к ее регенерации - периодическому считыванию ячеек с последующей перезаписью. В зависимости от конструктивных особенностей регенератор может находиться как в контроллере, так и в самой микросхеме памяти. В современных модулях памяти регенератор чаще всего встраивается внутрь самой микросхемы, причем перед регенерацией содержимое обновляемой строки копируется в специальный буфер, что предотвращает блокировку доступа к информации.
Эволюция динамической памяти

В микросхемах памяти, выпускаемых до середины девяностых, были существенные недостатки (большие задержки передачи данных, малый объем памяти и т.д.). С появлением Intel Pentium 60 (1993 год) и Intel 486DX4 100 (1994 год) возникла потребность в совершенствовании динамической памяти.

FPM DRAM ( Fast Page Mode DRAM ) быстрая страничная память

Первой моделью стала FPM-DRAM - Fast-Page Mode DRAM (Память быстрого страничного режима), разработанная в 1995 году. Основным отличием от памяти предыдущего поколения стала поддержка сокращенных адресов. Если очередная запрашиваемая ячейка находится в той же самой строке, что и предыдущая, ее адрес однозначно определяется одним лишь номером столбца и передача номера строки уже не требуется. При последовательном чтении ячеек памяти, (равно как и обработке компактных одно-двух килобайтовых структур данных), время доступа сокращается на 40%, так как обрабатываемая строка находится во внутреннем буфере микросхемы, и обращаться к матрице памяти нет никакой необходимости.

Недостатками FPM-DRAM памяти стало хаотичное обращение к памяти, равно как и перекрестные запросы ячеек из различных страниц, со всей очевидностью не могут воспользоваться преимуществами передачи сокращенных адресов и работают с FPM-DRAM в режиме обычной DRAM. Ситуация, когда запрашиваемая ячейка находится в открытой строке, называется "попаданием на страницу" (Page Hit), в противном случае говорят, что произошел промах (Page Miss). Поскольку, промах облагается штрафными задержками, критические к быстродействию модули должны разрабатываться с учетом особенностей архитектуры FPM-DRAM, так что абстрагироваться от ее устройства уже не получается. Возникла и другая проблема: непостоянство времени доступа затрудняет измерение производительности микросхем памяти и сравнение их скоростных показателей друг с другом.

EDO - DRAM ( Extended Data Out ) память с усовершенствованным выходом

С увеличением тактовой частоты микропроцессоров, требовалось качественное новое решение оперативной памяти, а не оптимизация FPM DRAM памяти. И в 1996 году был придуман новый интерфейс оперативной памяти - EDO-DRAM. Его основным отличием было в том, что каждую микросхему оснастили специальным триггером-защелкой, который удерживал линии данных после исчезновения сигнала подзарядки, что дало возможность дезактивировать сигнал подзарядки до окончания чтения данных, подготавливая в это время микросхему к приему номера следующего столбца.

Модуль памяти EDO-DRAM BEDO (Burst EDO) - пакетная EDO RAM

Двукратное увеличение производительности было достигнуто лишь в BEDO-DRAM (Burst EDO). Добавив в микросхему генератор номера столбца, конструкторы ликвидировали задержку сигнала подзарядки, сократив время цикла до 15 нс. После обращения к произвольной ячейке микросхема BEDO автоматически, без указаний со стороны контроллера, увеличивает номер столбца на единицу, не требуя его явной передачи. По причине ограниченной разрядности адресного счетчика (конструкторы отвели под него всего лишь два бита) максимальная длина пакета не могла превышать четырех ячеек (22=4).

Главным преимуществом BEDO памяти по сравнению с EDORAM было то что она работала на максимально возможной скорости с частотой 66 МГц, т.е. она была на ~40% быстрее EDO-DRAM! Все же, несмотря на свои скоростные показатели, BEDO оказалась не конкурентоспособной и не получила практически никакого распространения. Просчет состоял в том, что BEDO, как и все ее предшественники, оставалась асинхронной памятью. Это накладывало жесткие ограничения на максимально достижимую тактовую частоту, ограниченную 60 - 66 (75) мегагерцами.

SDRAM ( Synchronous DRAM ) - синхронная DRAM

Появление микропроцессоров с шинами на 100МГц привело к радикальному пересмотру механизма управления памятью, и подтолкнуло конструкторов к созданию синхронной динамической памяти - SDRAM (Synchronous-DRAM). Как и следует из ее названия, микросхемы SDRAM памяти работают синхронно с контроллером, что гарантирует завершение цикла в строго заданный срок. Кроме того, номера строк и столбцов подаются одновременно, с таким расчетом, чтобы к приходу следующего тактового импульса сигналы уже успели стабилизироваться и были готовы к считыванию.

Так же, в SDRAM реализован усовершенствованный пакетный режим обмена. Контроллер может запросить как одну, так и несколько последовательных ячеек памяти, а при желании - всю строку целиком! Это стало возможным благодаря использованию полноразрядного адресного счетчика уже не ограниченного, как в BEDO, двумя битами.

Другое усовершенствование. Количество матриц (банков) памяти в SDRAM увеличено с одного до двух (а, в некоторых моделях, и четырех). Это позволяет обращаться к ячейкам одного банка параллельно с перезарядкой внутренних цепей другого, что вдвое увеличивает предельно допустимую тактовую частоту. Помимо этого появилась возможность одновременного открытия двух (четырех) страниц памяти, причем открытие одной страницы (т.е. передача номера строки) может происходить во время считывания информации с другой, что позволяет обращаться по новому адресу столбца ячейки памяти на каждом тактовом цикле.

В отличие от FPM-DRAM\EDO-DRAM\BEDO, выполняющих перезарядку внутренних цепей при закрытии страницы синхронная память проделывает эту операцию автоматически, позволяя держать страницы открытыми столь долго, сколько это угодно. Еще одно преимущество - разрядность линий данных увеличилась с 32 до 64 бит, что еще вдвое увеличило ее производительность.

Модуль памяти SDRAM. DDR SDRAM, SDRAM II (Double Data Rate SDRAM)

Дальнее развитие синхронной памяти привело к появлению DDR-SDRAM - Double Data Rate SDRAM (SDRAM удвоенной скорости передачи данных). Удвоение скорости достигается за счет передачи данных и по фронту, и по спаду тактового импульса (в SDRAM передача данных осуществляется только по фронту). Благодаря этому эффективная частота увеличивается в два раза - 100 МГц DDR-SDRAM по своей производительности эквивалента 200 МГц SDRAM. Правда, по маркетинговым соображениям, производители DDR-микросхем стали маркировать их не тактовой /* рабочей */ частой, а максимально достижимой пропускной способностью, измеряемой в мегабайтах в секунду.

mirznanii.com

Как посмотреть какая оперативная память стоит на компьютере с Windows 7/10

Производительность компьютера есть совокупность нескольких факторов, а ещё лучше сказать технических характеристик аппаратных устройств, среди которых главную роль играют процессор, жесткие диски и, конечно же, оперативная память или сокращенно ОЗУ. На компьютере оперативная память служит своего рода промежуточным звеном между производящим все вычисления процессором и запоминающим устройством – жёстким диском HDD или SSD. В неё загружаются процессы всех программ и самой операционной системы Windows 7/10, если же объем данных приложений превышает вместимость ОЗУ, данные кэшируются, к примеру, в файл подкачки. Но в любом случае нехватка оперативной памяти приведёт к тому, что компьютер будет работать медленно, а приложения станут менее отзывчивыми. И напротив, чем больше на ПК оперативки, тем быстрее происходит обмен данными, тем шустрее система, тем более мощные приложения можно запускать.

Каковы основные характеристики оперативной памяти и зачем их знать

Итак, чем больше объём оперативной памяти, тем лучше, и именно поэтому пользователи нередко устанавливают на ПК дополнительный модуль ОЗУ. Однако нельзя вот так просто взять, пойти в магазин, купить любую память и подключить её к материнской плате. Если она будет выбрана неправильно, компьютер не сможет работать или ещё хуже, это приведёт к тому, что ОЗУ попросту выйдет из строя. Поэтому так важно знать её ключевые характеристики. К таковым относятся:

  • Тип оперативной памяти. В зависимости от производительности и конструктивных особенностей различают модули DDR2, DDR3 и DDR4.
  • Объём памяти. Параметр характеризуется объёмом данных, которые могут разместиться в ячейках памяти.
  • Частота оперативной памяти. Параметр обуславливает скорость выполняемых операций за единицу времени. От частоты зависит пропускная способность модуля ОЗУ.
  • Тайминг. Это временные задержки между отправкой команды контроллера памяти и её выполнением. С увеличением частоты тайминги возрастают, из-за чего разгон оперативки может привести к снижению ее производительности.
  • Вольтаж. Напряжение, необходимое для оптимальной работы планки памяти.
  • Форм-фактор. Физический размер, форма планки ОЗУ, а также количество и расположение контактов на плате.

Если вы устанавливаете дополнительную память, то она должна иметь те же объём, тип и частоту, что и основная. Если же производится полная замена оперативной памяти, внимание нужно обращать на поддержку заменяемой ОЗУ материнской платой и процессором с одним лишь нюансом. Если на ПК используются процессоры Intel Core i3, Intel Core i5, Intel Core i7, соответствие частоты памяти и материнской платы необязательно, потому что у всех этих процессоров контроллер ОЗУ располагается в самом процессоре, а не в северном мосту материнской платы. То же самое касается процессоров AMD.

Как определить тип и объем оперативной памяти визуально

Физически оперативная память представляет собой продолговатую плату чаще всего зеленого цвета с расположенными на ней чипами. На этой плате производитель обычно указывает основные характеристики памяти, хотя есть и исключения. Так, встречаются планки памяти, на которых кроме названия фирмы производителя не указывается ничего. При наличии же маркировки узнать, какая оперативная память установлена на ПК нетрудно. Полностью отключив компьютер и сняв крышку системного блока, осторожно извлеките модуль памяти из слота

viarum.ru

Оперативная память ПК, виды, назначение и основные характеристики

Федеральное агентство по образованиюГосударственное образовательное учреждениевысшего профессионального образования«Санкт-Петербургский государственныйинженерно-экономический университет»

РЕФЕРАТ

«Оперативная память ПК, виды, назначение и основные характеристики» по дисциплине «Информатика»

Руководитель А. А. КантаровичИсполнитель В. КалмыковГруппа 2601

Санкт-Петербург2010

Содержание.

Оперативная память - это, в отечественной научной терминологии, "оперативное запоминающее устройство" или ОЗУ, а в западной - RAM, то есть "Random Access Memory" ("память с произвольным доступом"). ОЗУ представляет собой область временного хранения данных, при помощи которой обеспечивается функционирование программного обеспечения. Память состоит из ячеек, каждая из которых предназначена для хранения определенного объема данных, как правило, одного или четырех бит. Чипы памяти работают синхронно с системной шиной. Компьютерная оперативная память является динамической (отсюда - DRAM или Dynamic RAM) - для хранения данных в такой памяти требуется постоянная подача электрического тока, при отсутствии которого ячейки опустошаются. Пример энергонезависимой или постоянной памяти (ПЗУ или ROM - Read Only Memory) памяти - флэш-память, в которой электричество используется лишь для записи и чтения, в то время как для самого хранения данных источник питания не нужен. Ячейки памяти в микросхемах представляют собой конденсаторы, которые заряжаются в случае необходимости записи логической единицы, и разряжаются при записи нуля. Опустошение памяти в случае отсутствия электроэнергии осуществляется именно за счет утечки токов из конденсаторов. (Рис.1)

Рис.1

Принцип работы оперативной памяти можно представить следующим образом. Поскольку ячейки организованы в виде двумерной матрицы, для получения доступа к той или иной ячейке необходимо указать адрес соответствующих строки и столбца. Для выбора адреса применяются импульсы RAS# (Row Access Strobe - стробирующий импульс доступа к строке) и CAS# (Column Acess Strobe - стробирующий импульс доступа к столбцу) при которых уровень сигнала (точнее, напряжение) изменяется с высокого на низкий. Эти импульсы синхронизированы с тактирующим импульсом, поэтому оперативная память также называется синхронной (SDRAM). Сначала подается сигнал активации необходимой строки, после чего - импульс RAS#, а затем - CAS#. При операции записи происходит то же самое, за исключением того, что в этом случае подается специальный импульс разрешения записи WE# (Write Enable), который также должен измениться с высокого на низкий. После завершения работы со всеми ячейками активной строки выполняется команда Precharge, позволяющая перейти к следующей строке. Существуют и другие сигналы, но в контексте данной статьи их можно не упоминать, чтобы неоправданно не усложнять материал.

Важнейшая характеристика памяти, от которой зависит производительность - это пропускная способность, которая выражается как произведение частоты системной шины на объем данных, передаваемых за каждый такт. В случае с памятью SDRAM мы имеет шину шириной 64 бита или 8 байт. Следовательно, к примеру, пропускная способность памяти типа DDR333 составляет 333 МГц х 8 Байт = 2,7 Гбайта в секунду или 2700 Мбайт в секунду. Отсюда, кстати, и другое название памяти - PC2700, по ее пропускной способности в мегабайтах в секунду. В последнее время часто используется двухканальное подключение памяти, при котором теоретическая пропускная способность удваивается. То есть, в случае с двумя модулями DDR333 мы получим максимально возможную скорость обмена данных 5,4 Гбайта/с.

Тем не менее, частота работы памяти и, следовательно, ее теоретическая пропускная способность не являются единственными параметрами, отвечающими за производительность. В действительности не менее важную роль играют и латентность памяти, то есть значения задержек между подачей команды и ее выполнением. Эти значения принято называть таймингами, которые выражаются в тактах, прошедших между поступлением какой-либо команды и ее реальным исполнением.Четыре важнейших тайминга, которые всегда используются при описании тех или иных модулей памяти - tRCD, tCL, tRP, tRAS (иногда дополнительно указывается и Command rate), причем записываются они обычно в этой же последовательности в виде 4-4-4-12-(1T) (цифры в данном случае произвольные). Аббревиатура tRCD расшифровывается как timе of RAS# to CAS# Delay - тайминг задержки между импульсами RAS# и CAS#. Сокращение tCL означает timе of CAS# Latency - тайминг задержки относительно импульса CAS# после подачи команды записи или чтения. tRP - это timе of Row Precharge: тайминг между завершением обработки строки и перехода к новой строке. Значение tRAS (time of Active to Precharge Delay) считается одним из основных параметров, поскольку он описывает время задержки между активацией строки и подачей команды Precharge, которой заканчивается работа с этой строкой. Наконец, параметр Command rate означает задержку между командой выбора конкретного чипа на модуле и командой активации строки; обычно эта задержка составляет не более одного-двух тактов.

Общее правило гласит: чем меньше тайминги при одной тактовой частоте, тем быстрее память. Более того, в целом ряде случаев быстрее оказывается память с меньшими таймингами, работающая даже на более низкой тактовой частоте. Все дело в том, что, как мы уже упоминали, оперативная память работает синхронно с системной шиной, поэтому память с частотой, не кратной частоте системной шины и с пропускной способностью, превышающей пропускную способность системной шины никаких преимуществ перед более дешевой не имеет. К примеру, системная шина современных процессоров Pentium 4 работает на частоте 800 МГц, что при ширине шины 64 бит обеспечивает максимальную пропускную способность в 6,4 Гбайта в секунду. Оптимальным выбором для таких чипов является двухканальная память DDR2 400 с аналогичной пропускной способностью в те же 6,4 Гбайта в секунду. Использование в двухканальном режиме более дорогих модулей типа DDR2 533/677 реальной прибавки в производительности вряд ли даст. Более того, в иных случаях есть смысл снизить рабочую частоту таких модулей, но добиться более низких таймингов. Это положительно скажется на производительности - чтобы убедиться в этом, достаточно "прогнать" различные тестовые программы.

Существует много различных видов оперативной памяти, но их все можно подразделить на две основные подгруппы - статическая память (Static RAM) и динамическая память (Dynamic RAM).

Эти два типа памяти отличаются, прежде всего, различной в корне технологической реализацией - SRAM будет хранить записанные данные до тех пор, пока не запишут новые или не отключат питание, а DRAM может хранить данные лишь небольшое время, после которого данные нужно восстановить (регенерировать), иначе они будут потеряны.

Рассмотрим достоинства и недостатки SRAM и DRAM:

Память типа DRAM, в силу своей технологии, имеет большую плотность размещения данных, чем SRAM.

DRAM гораздо дешевле SRAM, но последняя, производительнее и надежнее, поскольку всегда готова к считыванию.

2.1 Статическая память

Статическая память, или SRAM (Statistic RAM) является наиболее производительным типом памяти. Микросхемы SRAM применяются для кэширования оперативной памяти, в которой используются микросхемы динамической памяти, а также для кэширования данных в механических устройствах хранения информации, в блоках памяти видеоадаптеров и т. д. Фактически, микросхемы SRAM используются там, где необходимый объем памяти не очень велик, но высоки требования к быстродействию, а раз так, то оправдано использование дорогостоящих микросхем. В персональных компьютерах с процессорами, у которых не было интегрированной на кристалле кэш-памяти второго уровня, всегда использовались микросхемы SRAM внешнего кэша. Для удешевления системных плат и возможности их модернизации производители системных плат с процессорами 486 и первых поколений Pentium устанавливали специальные кроватки (разъемы для микросхем с DIP-корпусом), в которые можно было устанавливать различные микросхемы SRAM, отличающиеся как по быстродействию и объему памяти, так и различной разрядностью. Для конфигурирования памяти на системной плате предусматривался набор джамперов. Для справки прямо на системной плате краской наносилась информация об установке джамперов, например, как показано в табл.(в колонках JS1 и JS2 указаны номера контактов, которые надо замкнуть перемычками).

Пример таблицы конфигурирования кэш-памяти на системной плате:

Отметим, что изменением конфигурации кэш-памяти занимались только тогда, когда выходила из строя какая-либо микросхема кэш-памяти. В остальных случаях изменять положение джамперов не рекомендовалось. В дальнейшем, по мере разработки более совершенных микросхем SRAM, они непосредственно припаивались на системную плату в количестве 1, 2 или 4 штук. На системных платах, которые выпускаются в настоящее время, микросхемы SRAM используются, в основном, только для кэширования ввода/вывода и других системных функций.

mirznanii.com

Оперативная память компьютера. Как выбрать, заменить, модернизировать.

Здравствуйте дорогие читатели. Сегодня речь пойдет об оперативной памяти компьютера. Расскажу о том, что из себя представляет оперативная память как компонент, какие типы памяти используются на сегодняшний день, сколько озу требуется для определенных задач. А также затрону тему модернизации компьютера с помощью оперативной памяти.

Оперативная память

ОЗУ — это устройство компьютера представляющее собой часть памяти для временного хранения данных при использовании этих данных процессором. Процессор компьютера работает только с теми данными, которые загружены в оперативную память. Поэтому после запуска какой-либо программы или открытии файла некоторое время ничего не происходит. В это время компьютер загружает программу в оперативную память. То есть программы и файлы, открытые на компьютере в настоящий момент, загружаются в оперативную память.  Соответственно чем больше оперативной памяти в вашем компьютере, тем больше программ на нем может быть запущено одновременно. Эта память является не постоянной и при отключении питания компьютера в ней ничего не сохраняется.

Физически оперативная память представляет собой планку интегральной схемы со стандартным разъемом одного из типов.Так выглядит планка оперативной памяти когда вставлена в слот на материнской плате.

Типы оперативной памяти.

Основных типов оперативной памяти 3  - DDR, DDR2 и DDR3. На сегодняшний день самыми популярным является DDR3.

Модули оперативной памяти DDR можно встретить лишь на самых старых компьютерах. Сегодня они почти исчезли с рынков. Поэтому если потребуется модуль такого типа, он будет стоить дороже современного(из-за дефицита).

Более современная DDR2 память также работает внутри многих системных блоков пользователей. Отличие от предыдущей в увеличенной скорости и низком энергопотреблении. Тактовая частота вдвое больше, а напряжение питания почти наполовину меньше.

Самая распространенная оперативная память типа DDR3 используется в большинстве компьютеров на сегодняшний день. Она работает на вдвое большей тактовой частоте нежели DDR2 и обладает меньшим энергопотреблением, что позволяет выделять меньше тепла и не нагревать воздух внутри системного блока.

Кроме скорости и напряжения у этих типов памяти различные разьемы подключения к материнской плате. Каждый модуль типа DDR оборудован 184 контактами. Плата типа DDR2 оснащена 240 контактами. А в памяти типа DDR3 смещен вырез, что позволяет отличить ее от модулей DDR2. Нажмите на изображение справа чтобы посмотреть эти различия.

 

 

 Сколько нужно оперативной памяти

Вообще то на этот вопрос можно ответить чем больше тем лучше. Но не всегда. Первое что загружается в оперативную память это операционная система. Если речь идет об windows xp то она занимает около 200 мб в озу. Windows 7 и 8 после загрузки займут порядка 800 мб. Остальная память остается под пользовательские программы.

Для запуска офисных приложений будет достаточно 2 гигабайт озу. Если вам нужны игры и работа в издательских пакетах то 4 гигабайт вам в самый раз.

Устанавливать больше 4 гигабайт рекомендую тем кто использует очень много приложений одновременно, либо покупает компьютер с расчетом на будущее. При этом помните что 32-разрядная операционная система не может использовать больше чем 3.25 гб. Проще говоря если в вашем компьютере 4 и больше гб озу устанавливайте только 64-разрядную версию операционной системы.

У меня компьютер ругался на нехватку 4 гб оперативной памяти лишь несколько раз, и это происходило при попытках собрать сферическую панораму очень большого разрешения.

 

Маркировка оперативной памяти

Чтобы вам было легче понять что означают непонятные обозначения и аббревиатуры в названиях оперативной памяти вкратце поясню.

DIMM и SODIMM - это форм-фактор, то есть стандарт формы разъема. DIMM это обычная компьютерная планка памяти. SODIMM уменьшенная планка памяти, используется в ноутбуках.

ECC — (Error Checking & Correction) поддержка функции обнаружения и исправления ошибок в потоке данных. Чаще используется в серверных станциях и стоит намного дороже подобных без поддержки ECC. Не стоит заморачиваться — берите без этой функции.

Registered — Буферизованная, еще один параметр повышающий надежность памяти, также повышающий цену на нее. В основном используется в серверах.

CL — Количество тактов, за которые данные считываются из памяти. Чем число CL ниже тем быстрее память.

Тактовая частота — скорость работы оперативной памяти определяется именно этим параметром. Кроме того сверьтесь с инструкцией к вашей материнской плате, чтобы достичь оптимального результата.

 

Модернизация за счет увеличения замены озу

Уверен что многие компьютеры можно ускорить лишь заменив оперативную память либо увеличив ее объем. В каком случае это возможно?

Если ваш компьютер замечательно работает, но начинает зависать при открытии нескольких программ это признак нехватки оперативной памяти. При ее нехватке обычно операционная система начинает использовать память жесткого диска как продолжение ОЗУ, но так как скорость ОЗУ и жесткого диска очень разные происходит замедление работы всего компьютера. В таком случае нужно узнать есть ли на вашей материнской плате место под дополнительный слот памяти. Если есть то нужно приобрести аналогичный тип памяти и добавить к имеющемуся.

Другой случай если резких спадов производительности не происходит, но вас не устраивает скорость работы компьютера. В таком случае вам нужно узнать из инструкции либо с помощью специальных программ какую максимально быструю оперативную память поддерживает ваша материнская плата. Если на материнке установлены не самые быстрые модули памяти из поддерживаемых можно их поменять на более шустрые и получить прирост производительности.

Вроде все, если есть вопросы задавайте.

О конкурсе комментаторов

Лучшими комментаторами за сентябрь стали Симон, Юрий и Михаил. Для начисления призов жду ваши номера яндекс-кошельков на почту. Отправляйте запросы через обратную связь. Помните каждый может участвовать и победить. Симон занял первое место оставив лишь 16 комментариев, а вы разве не сможете?

Ну все, до связи.

compusers.ru