Классы IP-адресов: описание, особенности и классификация. Виды ip адресов


17. Адресация. Типы адресов в tcp/ip. Адресация в ip-сетях

L i n u x P a r k

Типы адресов: физический (mac-адрес), сетевой (ip-адрес) и символьный (dns-имя)

Каждый компьютер в сети TCP/IP имеет адреса трех уровней:

  • Локальный адрес узла, определяемый технологией, с помощью которой построена отдельная сеть, в которую входит данный узел. Для узлов, входящих в локальные сети - это МАС-адрес сетевого адаптера или порта маршрутизатора, например, 11-А0-17-3D-BC-01. Эти адреса назначаются производителями оборудования и являются уникальными адресами, так как управляются централизовано. Для всех существующих технологий локальных сетей МАС-адрес имеет формат 6 байтов: старшие 3 байта - идентификатор фирмы производителя, а младшие 3 байта назначаются уникальным образом самим производителем. Для узлов, входящих в глобальные сети, такие как Х.25 или frame relay, локальный адрес назначается администратором глобальной сети.

  • IP-адрес, состоящий из 4 байт, например, 109.26.17.100. Этот адрес используется на сетевом уровне. Он назначается администратором во время конфигурирования компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера сети и номера узла. Номер сети может быть выбран администратором произвольно, либо назначен по рекомендации специального подразделения Internet (Network Information Center, NIC), если сеть должна работать как составная часть Internet. Обычно провайдеры услуг Internet получают диапазоны адресов у подразделений NIC, а затем распределяют их между своими абонентами.

Номер узла в протоколе IP назначается независимо от локального адреса узла. Деление IP-адреса на поле номера сети и номера узла - гибкое, и граница между этими полями может устанавливаться весьма произвольно. Узел может входить в несколько IP-сетей. В этом случае узел должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

  • Символьный идентификатор-имя, например, SERV1.IBM.COM. Этот адрес назначается администратором и состоит из нескольких частей, например, имени машины, имени организации, имени домена. Такой адрес, называемый также DNS-именем, используется на прикладном уровне, например, в протоколах FTP или telnet.

IP-адреса определены в том же самом RFC, что и протокол IP. Именно адреса являются той базой, на которой строится доставка сообщений через сеть TCP/IP.

IP-адрес - это 4-байтовая последовательность. Принято каждый байт этой последовательности записывать в виде десятичного числа. Например:

144.206.160.32

Каждая точка доступа к сетевому интерфейсу имеет свой IP-адрес.

IP-адрес состоит из двух частей: адреса сети и номера хоста. Вообще говоря, под хостом понимают один компьютер, подключенный к Сети. В последнее время, понятие "хост" можно толковать более расширено. Это может быть и принтер с сетевой картой, и Х-терминал, и вообще любое устройство, которое имеет свой сетевой интерфейс.

Существует 5 классов IP-адресов. Эти классы отличаются друг от друга количеством битов, отведенных на адрес сети и адрес хоста в сети. На рисунке 2.14 показаны эти пять классов.

Рис. 2.14. Классы IP-адресов

Опираясь на эту структуру, можно подсчитать характеристики каждого класса в терминах числа сетей и числа машин в каждой сети.

Класс

Диапазон значений первого октета

Возможное количество сетей

Возможное количество узлов

А

1 - 126

126

16777214

B

128 - 191

16382

65534

C

192 - 223

2097150

254

D

224 - 239

-

228

E

240 - 247

-

227

Рис. 2.15. Характеристики классов IP-адресов

В таблице приведены диапазоны номеров сетей, соответствующих каждому классу сетей.

Класс

Наименьший адрес

Наибольший адрес

A

01.0.0

126.0.0.0

B

128.0.0.0

191.255.0.0

C

192.0.1.0

223.255.255.0

D

224.0.0.0

239.255.255.255

E

240.0.0.0

247.255.255.255

При разработке структуры IP-адресов предполагалось, что они будут использоваться по разному назначению.

Адреса класса Aпредназначены для использования в больших сетях общего пользования.Адреса класса Bпредназначены для использования в сетях среднего размера (сети больших компаний, научно-исследовательских институтов, университетов).Адреса класса Cпредназначены для использования в сетях с небольшим числом компьютеров (сети небольших компаний и фирм).Адреса класса Dиспользуют для обращения к группам компьютеров, аадреса класса E- зарезервированы.

Среди всех IP-адресов имеется несколько зарезервированных под специальные нужды. Ниже приведена таблица зарезервированных адресов.

IP-адрес

Значение

все нули

данный узел сети

номер сети | все нули

данная IP-сеть

все нули | номер узла

узел в данной (локальной) сети

все единицы

все узлы в данной локальной IP-сети

номер сети | все единицы

все узлы указанной IP-сети

127.0.0.1

"петля"

Рис. 2.16. Выделенные IP-адреса

Особое внимание в таблице (рисунок 2.16) уделяется последней строке. Адрес 127.0.0.1 предназначен для тестирования программ и взаимодействия процессов в рамках одного компьютера. В большинстве случаев в файлах настройки этот адрес обязательно должен быть указан, иначе система при запуске может зависнуть (как это случается в SCO Unix). Наличие "петли" чрезвычайно удобно с точки зрения использования сетевых приложений в локальном режиме для их тестирования и при разработке интегрированных систем.

Вообще, зарезервирована вся сеть 127.0.0.0. Эта сеть класса A реально не описывает ни одной настоящей сети.

Некоторые зарезервированные адреса используются для широковещательных сообщений. Например, номер сети(строка 2) используется для посылки сообщений этой сети (т.е. сообщений всем компьютерам этой сети). Адреса, содержащие все единицы, используются для широковещательных посылок (для запроса адресов, например).

Реальные адреса выделяются организациями, предоставляющими IP-услуги, из выделенных для них пулов IP-адресов. Согласно документации NIC (Network Information Centre) IP-адреса предоставляются бесплатно, но в прейскурантах наших организаций (как коммерческих, так и некоммерческих), занимающихся Internet-сервисом предоставление IP-адреса стоит отдельной строкой.

studfiles.net

Адресация в ip-сетях. Типы адресов

Каждый компьютер в сети TCP/IP имеет адреса трех уровней:

  • Локальный адрес узла, определяемый технологией, с помощью которой построена отдельная сеть, в которую входит данный узел. Для узлов, входящих в локальные сети - это МАС-адрес сетевого адаптера или порта маршрутизатора, например, 11-А0-17-3D-BC-01. Эти адреса назначаются производителями оборудования и являются уникальными адресами, так как управляются централизовано. Для всех существующих технологий локальных сетей МАС-адрес имеет формат 6 байтов: старшие 3 байта - идентификатор фирмы производителя, а младшие 3 байта назначаются уникальным образом самим производителем. Для узлов, входящих в глобальные сети, локальный адрес назначается администратором глобальной сети.

  • IP-адрес, состоящий из 4 байт, например, 109.26.17.100. Этот адрес используется на сетевом уровне. Он назначается администратором во время конфигурирования компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера сети и номера узла. Номер сети может быть выбран администратором произвольно, либо назначен по рекомендации специального подразделения Internet (Network Information Center, NIC), если сеть должна работать как составная часть Internet. Обычно провайдеры услуг Internet получают диапазоны адресов у подразделений NIC, а затем распределяют их между своими абонентами. Номер узла в протоколе IP назначается независимо от локального адреса узла. Деление IP-адреса на поле номера сети и номера узла - гибкое, и граница между этими полями может устанавливаться весьма произвольно. Узел может входить в несколько IP-сетей. В этом случае узел должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом, IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

  • Символьный идентификатор-имя, например, SERV1.IBM.COM. Этот адрес назначается администратором и состоит из нескольких частей, например, имени машины, имени организации, имени домена. Такой адрес, называемый также DNS-именем, используется на прикладном уровне, например, в протоколах FTP или telnet.

Три основных класса ip-адресов

IP-адрес имеет длину 4 байта и обычно записывается в виде четырех чисел, представляющих значения каждого байта в десятичной форме, и разделенных точками, например:

128.10.2.30 - традиционная десятичная форма представления адреса,

На рисунке 11.2. показана структура IP-адреса.

Класс А

Класс В

1

0

N сети

N узла

Класс С

1

1

0

N сети

N узла

Класс D

1

1

1

0

адрес группы multicast

Класс Е

1

1

1

1

0

зарезервирован

Рис. 11.2. Структура IР-адреса

Адрес состоит из двух логических частей – номера сети и номера узла в сети. Какая часть адреса относится к номеру сети, а какая к номеру узла, определяется значениями первых битов адреса:

  • Если адрес начинается с 0, то сеть относят к классу А, и номер сети занимает один байт, остальные 3 байта интерпретируются как номер узла в сети. Сети класса А имеют номера в диапазоне от 1 до 126. (Номер 0 не используется, а номер 127 зарезервирован для специальных целей, о чем будет сказано ниже.) В сетях класса А количество узлов должно быть больше 216 , но не превышать 224.

  • Если первые два бита адреса равны 10, то сеть относится к классу В и является сетью средних размеров с числом узлов 28 - 216. В сетях класса В под адрес сети и под адрес узла отводится по 16 битов, то есть по 2 байта.

  • Если адрес начинается с последовательности 110, то это сеть класса С с числом узлов не больше 28. Под адрес сети отводится 24 бита, а под адрес узла - 8 битов.

  • Если адрес начинается с последовательности 1110, то он является адресом класса D и обозначает особый, групповой адрес - multicast. Если в пакете в качестве адреса назначения указан адрес класса D, то такой пакет должны получить все узлы, которым присвоен данный адрес.

  • Если адрес начинается с последовательности 11110, то это адрес класса Е, он зарезервирован для будущих применений.

В таблице приведены диапазоны номеров сетей, соответствующих каждому классу сетей.

Класс

Наименьший адрес

Наибольший адрес

Число сетей

Число узлов в сети

A

1.0.0.0

126.0.0.0

126

16 млн.

B

128.1.0.0

191.255.0.0

16 тыс.

65 тыс.

C

192.0.1.0.

223.255.255.0

2 млн.

254

D

224.0.0.0

239.255.255.255

256 млн.

Не ограничено

E

240.0.0.0

247.255.255.255

128 млн.

Резерв

Класс

1 байт

2 байт

3 байт

4 байт

A

0nnnnnnn

hhhhhhhh

hhhhhhhh

hhhhhhhh

B

10nnnnnn

nnnnnnnn

hhhhhhhh

hhhhhhhh

C

110nnnnn

nnnnnnnn

nnnnnnnn

hhhhhhhh

D

1110nnnn

nnnnnnnn

nnnnnnnn

nnnnnnnn

E

11110nnn

nnnnnnnn

nnnnnnnn

nnnnnnnn

studfiles.net

Адресация, зарезервированные сетевые адреса, виды адресов.

Вы также можете скачать PDF версию этой шпаргалки, распечатать и пользоваться ;)

Здесь предствлено несколько таблиц, которые помогут вам делить сети на подсети.

Классовая адресация (classfull)
Класс Первые биты Диапазон сети Маска сети
A 0 1.0.0.0 – 126.0.0.0 255.0.0.0
B 10 128.0.0.0 – 191.255.0.0 255.255.0.0
C 110 192.0.0.0 – 223.255.255.0 255.255.255.0
D 1110 224.0.0.0 – 239.255.255.255 255.255.255.255
E 11110 240.0.0.0 – 247.255.255.255 Зарезервировано
Зарезервированные (частные) диапазоны IP-адресов
10.0.0.0 – 10.255.255.255 Зарезервированные (частные, внутренние, внутрисетевые, локальные, серые, неанонсированные) адреса не используются в сети Интернет и используются только в локальных сетях.
172.16.0.0 – 172.31.255.255
192.168.0.0 – 192.168.255.255
Адреса обратной связи
127.0.0.0 – 127.255.255.255 Предназначены для петлевых интерфейсов (localhost, loopback).
Адрес сети и адрес узла (хоста)
Адрес сети Адрес хоста  
255.255.240.0   Маска в десятичном формате Маска подсети соответствует префиксу /20
11111111.11111111.1111 0000.00000000 Маска в двоичном формате
192.168.181.78   IP-адрес в десятичном формате Маска делит IP-адрес на 2 порции: сети и адреса
11000000.10101000.1011 0101.01001110 IP-адрес в двоичном формате
Зарезервированные специальные адреса
Шлюз по умолчанию (default gateway) В IP-адресе все нули
0.0.0.0   IP-адрес в десятичном формате
00000000.00000000.0000 0000.00000000 IP-адрес в двоичном формате
Широковещательный адрес всех сетей В IP-адресе все единицы
255.255.255.255   IP-адрес в десятичном формате
11111111.11111111.1111 1111.11111111 IP-адрес в двоичном формате
Идентификатор сети В порции адреса хоста все нули
192.168.176.0   IP-адрес в десятичном формате
11000000.10101000.1011 0000.00000000 IP-адрес в двоичном формате
Широковещательный адрес конкретной сети В порции адреса хоста все единицы
192.168.191.255   IP-адрес в десятичном формате
11000000.10101000.1011 1111.11111111 IP-адрес в двоичном формате
Идентификатор хоста сети, которой он принадлежит В порции адреса сети все нули
0.0.5.78   IP-адрес в десятичном формате
00000000.00000000.0000 0101.01001110 IP-адрес в двоичном формате
Широковещательный адрес всем узлам текущей сети В порции адреса сети все единицы
255.255.245.78   IP-адрес в десятичном формате
11111111.11111111.1111 0101.01001110 IP-адрес в двоичном формате
VLSM
VLSM – Переменная длина маски подсети (Variable Length Subnet Mask). VLSM позволяет разделять сети на подсети различного размера (т.е. у которых переменная длина маски).
CIDR
CIDR – Бесклассовая междоменная адрессация (Classless Inter-Domain Routing). CIDR позволяет агрегировать (суммировать) маршрутные записи. Другими словами, уменьшать количество записей хранящихся в таблице маршрутизатора и передаваемых другому маршрутизатору.
28 27 26 25 24 23 22 21 Степени двойки
256 128 64 32 16 8 4 2
216 215 214 213 212 211 210 29
65536 32768 16384 8192 4096 2048 1024 512

infocisco.ru

описание, особенности и классификация :: SYL.ru

Всем известно, что интернет-соединения происходят с участием сетевых адресов. Каждое устройство в сети имеет свой «айпи». Но что это такое на практике? Как они определяются и что означают классы IP-адресов?

Администрирование присвоенных номеров Интернета (IANA) отвечает за управление распределением "айпи"-адресов по всему миру. Под контролем IANA существует пять региональных интернет-реестров (RIR), которые занимаются распределением блоков «айпи» поставщикам услуг Интернета (ISP) и другим доверенным организациям.

Для того, чтобы системы могли находить друг друга в распределенной среде, узлам даются адреса, однозначно идентифицирующие конкретную сеть, в которой находится система, и осуществляющие обратное распознавание. Когда они объединены, результатом является глобальный уникальный идентификатор.

Как это выглядит?

Этот адрес, известный как "айпи", представляет собой код, состоящий из чисел, разделенных тремя точками, которые распознают конкретный компьютер в интернете. Он является 32-битным двоичным числом, состоящим из двух упомянутых выше субадресов (идентификаторов), которые, соответственно, распознают сеть и хост в ней с условной границей, разделяющей их. Он обычно отображается как 4 октета чисел от 0-255, представленных в десятичной форме вместо двоичной.

Например, 168.212.226.204 представляет собой 32-битный двоичный номер 10101000.11010100.11100010.11001100. Бинарный номер очень важен, потому что именно он определяет, к какому классу относится IP-адрес.

Расположение границы между сетью и хост-частями "айпи"-идентификатора определяется с помощью маски подсети. Это 32-битное двоичное число, которое действует как фильтр, когда оно применяется к аналогичному «айпи». Сравнивая маску подсети с ним, системы могут определять, какая его часть относится к сети, а какая - к хосту. В любом случае она имеет бит, установленный в «1», а базовый бит в «айпи» является частью сетевого адреса. В любом случае, когда маске подсети установлено значение «0», связанный бит является частью идентификатора хоста. На этих правилах основана используемая сегодня IP-адресация. Классы IP-адресов также имеют четкую структуру, о которой указано ниже.

Какова дальнейшая перспектива?

Размер сети - это функция количества бит, используемых для идентификации хост-части адреса. Если маска подсети показывает, что для основной части блока адреса используется 8 бит, для этой конкретной сети доступно не более 256 идентификаторов хоста. Если она показывает, что для хост-части применяется 16 бит, для использования может быть применено максимум 65 536 возможных вариантов. По этим данным определяются классы сетей по адресам IP.

Учитывая быстрый рост Интернета и связанных с ним технологий, использование IPv4 в долгосрочной перспективе не является стабильным. В середине 1990-х годов был разработан новый метод IPv6, который использует 128 бит для этой цели. Технология нового поколения продолжает развиваться по сегодняшний день, хотя и медленно.

Где указаны сетевые адреса?

Протокол Интернета определен в RFC 791: Internet Protocol, опубликованном в 1981 году. Он предназначен для использования в компьютерной сети с коммутацией пакетов и обеспечивает передачу пакетов данных (определенных как датаграммы) из исходных устройств к адресатам.

Исходные и целевые устройства идентифицируются по адресу фиксированной длины, определенному протоколом. В спецификации также учитывается фрагментация данных и повторное объединение более длинных блоков по мере необходимости. Спецификации и классы IP-адресов не относятся к надежности данных, управлению потоком, последовательности, качеству обслуживания и т. д. Эти аспекты обрабатываются с помощью таких технологий, как TCP (протокол управления передачей).

Как это работает?

Ключевым механизмом, используемым в определении "айпи", являются: тип службы, время работы, параметры и контрольная сумма заголовка. Тип службы используется для указания качества требуемого обслуживания, которое должно использоваться маршрутизаторами (или шлюзами) для выбора параметров передачи, применимых к сети, или для пересылки информации.

Время работы указывает верхнюю границу того, как долго датаграмма или пакет данных должны быть отправлены до отказа. Параметры позволяют выполнять функции управления для определенных сетей, таких как специальная маршрутизация, безопасность или временные метки, но не требуются для стандартной связи. Контрольная сумма заголовка используется для обеспечения правильной передачи пакета данных.

Поставщик интернет-услуг (ISP) обычно назначает статический (всегда один и тот же), либо динамический адрес (изменяется каждый раз, когда вы входите в систему). Всего в мире используется около 4,3 миллиарда «айпи». Типы соединений при этом напрямую зависят от того, к какому классу относится IP-адрес, используемый в них.

Разновидности "айпи"

Классы IP-адресов являются их исходной организационной структурой. Каждый из них определяет максимальный размер потенциала для компьютерной сети. Класс адреса указывает, какой из конкретных его битов будет использоваться для сетевой идентификации, для определения хост-компьютера и идентификатора хоста, а также определяет общее количество подключений, разрешенных для каждой сети. Всего установлено пять общих классов IP-адресов: A,B,C,D и E.

Класс A используется для сетей с очень большим количеством общих хостов, B предназначен для применения в сетях среднего и крупного масштаба, C - для небольших локальных сетей. D и E предназначены для многоадресных и экспериментальных целей соответственно. Как определить класс IP-адреса? Для этого необходимо обратить внимание на его первый октет, то есть на значение в десятичной форме первых четырех байтов.

А

У адресов класса А всегда есть первый бит, установленный на «0». Поскольку такие сети имеют 8-битную сетевую маску, использование начального нуля оставляет только 7 bit для сетевой части адреса, и это позволяет использовать до 128 возможных номеров, начиная от 0.0.0.0 и до 127.0.0.0. Стоит отметить, что номер 127.x.x.x зарезервирован для loopback, который используется для внутреннего тестирования на локальном компьютере.

B

У IP-адресов класса B всегда есть первый бит, установленный в «1», а второй - «0». Поскольку они имеют 16-разрядную сетевую маску, использование ведущего шаблона оставляет 14 бит для сетевой части адреса. Это дает возможность использовать максимум 16 384 номеров сети, начиная с 128.0.0.0 и заканчивая 191.255.0.0.

C

В идентификаторах C первые два бита установлены на «1», а их третий - на «0». Поскольку они имеют 24-битную сетевую маску, это оставляет 21 бит для сетевой части адреса, и это дает возможность применить до 2097152 адресов, начиная от 192.0.0.0 и заканчивая 223.255.255.0.

D

Адреса класса D используются для многоадресных приложений. В них первые три бита установлены на «1», а их четвертый - на «0». Они являются 32-разрядными, и это означает, что все значения в диапазоне 224.0.0.0 - 239.255.255.255 используются для однозначной идентификации групп многоадресной рассылки. В пространстве класса D нет адресов хостов, так как все хосты внутри группы совместно используют общий «айпи» для получателя.

E

Адреса E определяются как экспериментальные, которые зарезервированы для будущих целей тестирования. Они никогда не регистрировались и не использовались стандартным образом. Первый их октет находится в диапазоне от 240 до 255. Данный диапазон зарезервирован IETF, а соединение аналогично разновидности D. Ввиду того, что он не входит в основные классы IP-адресов, особые IP-адреса E не должны назначаться хост-устройствам.

Для большей наглядности лучше изобразить эти данные в структурированном виде.

Класс адресаразброс значений 1-го октетаначальные биты 1-го октетаоктеты сети (С) и хоста (Х)
Аот 1 до 1260С.Х.Х.Х
Всо 128 по 19110С.С.Х.Х
Ссо 192 по 223110С.С.С.Х
Dот 224 по 2391110резерв для многоадресности
Еот 240 до 2541111резерв для исследований

Такая таблица классов IP-адресов помогает с точностью определить тип соединения и используемые в ней «айпи».

Что такое обновленная технология?

IETF определил проблему с быстрым исчерпанием адресного пространства несколько десятилетий назад. Несмотря на изобретение бесклассовой адресации, было оценено, что для удовлетворения долгосрочных потребностей требуется новый протокол. IPv6 разработан как следующий стандарт, который был выпущен в 1995 году. Полученное адресное пространство было увеличено с 32 до 128 бит (16 октетов), что признано исследователями адекватным, по крайней мере, для среднесрочных требований к росту интернета.

Еще одно решение проблемы

После изобретения системы доменных имен (DNS) стало очевидно, что использование классов для идентификаторов будет ограничивать масштабируемость интернета. В результате IETF опубликовал RC 1518 и 1519 в 1993 году для определения бесклассового метода маршрутизации пакетов данных. Самое последнее определение этого стандарта произошло в 2006 году в соответствии с RFC 4632. Бесклассовая «айпи»-адресация была введена как более эффективное средство для использования сетевого пространства, по сравнению со сложившейся системой. При применении данной технологии «айпи» рассматривается как 32-разрядный поток, где граница между идентификацией сети и хостом может быть в любой из бит-позиций. Сетевая его часть определяется числом 1, которое в маске подсети применяется ко всему адресу. Маска подсети используется локально на хостах, подключенных к сети, и никогда не передается в пакете данных или датаграмме.

www.syl.ru

Типы адресов стека tcp/ip

В стеке TCP/IP используются три типа адресов: локальные (называемые также аппаратными), IP-адреса и символьные доменные имена.

В терминологии TCP/IP под локальным адресомпонимается такой тип адреса, который используется средствами базовой технологии для доставки данных в пределах подсети, являющейся элементом составной интерсети. В разных подсе­тях допустимы разные сетевые технологии, разные стеки протоколов, поэтому при создании стека TCP/IP предполагалось наличие разных типов локальных адресов. Если подсетью интерсети является локальная сеть, то локальный ад­рес — это МАС-адрес. МАС-адрес назначается сетевым адаптерам и сетевым интерфейсам маршрутизаторов. МАС-адреса назначаются производителями обо­рудования и являются уникальными, так как управляются централизованно. Для всех существующих технологий локальных сетей МАС-адрес имеет формат 6 байт, например 11-AO-17-3D-BC-01. Однако протоколIPможет работать и над прото­колами более высокого уровня, например над протоколомIPXили Х.25. В этом случае локальными адресами для протоколаIPсоответственно будут адресаIPXи Х.25. Компьютер в локальной сети может иметь несколько локальных адресов даже при одном сетевом адаптере. Некоторые сетевые устрой­ства не имеют локальных адресов. Например, к таким устройствам относятся глобальные порты маршрутизаторов, предназначенные для соединений типа «точ­ка-точка».

IP-адреса,представляют собой основной тип адресов, на основании которых сетевой уровень передает пакеты между сетями. Эти адреса состоят из 4 байт, на­пример 109.26.17.100. IP-адрес назначается администратором во время конфигу­рирования компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера сети и номера узла. Номер сети может быть выбран администратором произволь­но, либо назначен по рекомендации специального подразделенияInternet, если сеть должна работать как составная частьInternet. Обычно поставщики услугInternetполучают диапазоны адресов у подразделенийInterNIC, а затем распределяют их между своими абонентами. Но­мер узла в протоколеIPназначается независимо от локального адреса узла. Марш­рутизатор по определению входит сразу в несколько сетей. Поэтому каждый порт маршрутизатора имеет собственный IP-адрес. Конечный узел также может вхо­дить в несколько IP-сетей. В этом случае компьютер должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом, IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

Классы ip-адресов

IP-адрес имеет длину 4 байта и обычно записывается в виде четырех чисел, пред­ставляющих значения каждого байта в десятичной форме и разделенных точками, например, 128.10.2.30 — традиционная десятиная форма представления адреса, а 10000000 00001010 00000010 00011110 - двоичная форма представления этого же адреса. Адрес состоит из двух логических частей — номера сети и номера узла в сети. Какая часть адреса относится к номеру сети, а какая — к номеру узла, определяется значениями первых бит адреса. Значения этих бит являются также признаками того, к какому классуотносится тот или иной IP-адрес.

Если адрес начинается с 0, то сеть относят к классу Аи номер сети занимает один байт, остальные 3 байта интерпретируются как номер узла в сети. Сети класса А имеют номера в диапазоне от 1 до 126. (Номер 0 не используется, а номер 127 зарезервирован для специальных целей, о чем будет сказано ниже.) Сетей класса А немного, зато количество узлов в них может достигать 224, то есть 16 777 216 узлов.

Если первые два бита адреса равны 10, то сеть относится к классу В.В сетях класса В под номер сети и под номер узла отводится по 16 бит, то есть по 2 байта. Таким образом, сеть класса В является сетью средних размеров с максимальным числом узлов 216, что составляет 65 536 узлов.

Если адрес начинается с последовательности 110, то это сеть класса С.В этом случае под номер сети отводится 24 бита, а под номер узла — 8 бит. Сети этого класса наиболее распространены, число узлов в них ограничено 28, то есть 256 узлами.

Если адрес начинается с последовательности 1110, то он является адресом клас­са D иобозначает особый, групповой адрес —multicast. Если в пакете в качестве адреса назначения указан адрес классаD, то такой пакет должны получить все узлы, которым присвоен данный адрес.

Если адрес начинается с последовательности 11110, то это значит, что данный адрес относится к классу Е.Адреса этого класса зарезервированы для будущих применений.

Назначение IP – адресов узлам сети даже при не очень большом размере сети может представлять значительные трудности. Протокол Dynamic Host Configuration Protocol (DHCP) освобождает администратора от этих проблем, автоматизируя процесс назначения IP – адресов.

DHCPможет поддерживать способ автоматического динамического распреде­ления адресов, а также более простые способы ручного и автоматического стати­ческого назначения адресов. Протокол DHCP работает в соответствии с моделью клиент-сервер. Во время старта системы компьютер, являющийся DHCP-клиентом, посылает в сеть широковещательный запрос на получение IP-адреса.DHCP-cepвер откликается и посылает сообщение - ответ, содержащее IP-адрес. Предполагает­ся, что DHCP - клиент и DHCP-сервер находятся в одной IP-сети.

При динамическом распределении адресов DHCP-сервер выдает адрес клиенту на ограниченное время, называемое временем аренды (lease duration),что дает возмож­ность впоследствии повторно использовать этот IP-адрес для назначения другому компьютеру. Основное преимуществоDHCP— автоматизация рутинной работы ад­министратора по конфигурированию стека TCP/IP на каждом компьютере. Иногда динамическое разделение адресов позволяет строить IP-сеть, количество узлов в ко­торой превышает количество имеющихся в распоряжении администратора IP-адресов.

В ручной процедуре назначения статических адресов активное участие прини­мает администратор, который предоставляет DHCP-серверу информацию о соот­ветствии IP-адресов физическим адресам или другим идентификаторам клиентов. DHCP-сервер, пользуясь этой информацией, всегда выдает определенному клиен­ту назначенный администратором адрес.

При автоматическом статическом способе DHCP-сервер присваивает IP-адрес из пула наличных IP-адресов без вмешательства оператора. Границы пула назнача­емых адресов задает администратор при конфигурировании DHCP-сервера. Адрес дается клиенту из пула в постоянное пользование, то есть с неограниченным сро­ком аренды. Между идентификатором клиента и его IP-адресом по-прежнему, как и при ручном назначении, существует постоянное соответствие. Оно устанавлива­ется в момент первого назначения DHCP-сервером IP-адреса клиенту. При всех последующих запросах сервер возвращает тот же самый IP-адрес.

DHCP обеспечивает надежный и простой способ конфигурации сети TCP/IP, гарантируя отсутствие дублирования адресов за счет централизованного управле­ния их распределением. Администратор управляет процессом назначения адресов с помощью параметра «продолжительность аренды», которая определяет, как дол­го компьютер может использовать назначенный IP-адрес, перед тем как снова за­просить его от DHCP-сервера в аренду.

Примером работы протокола DHCP может служить ситуация, когда компьютер, являющийся DHCP - клиентом, удаляется из подсети. При этом назначенный ему IP-адрес автоматически освобождается. Когда компьютер подключается к другой подсети, то ему автоматически назначается новый адрес. Ни пользователь, ни сетевой администратор не вмешиваются в этот процесс. Это свойство очень важно для мобильных пользователей.

studfiles.net