15 характеристик мониторов, о которых полезно знать перед покупкой. Яркость монитора в чем измеряется


Яркость и контрастность ЖК-мониторов

Этот обзор является дополнением к статье о мониторе NEC P232W.

Яркость и контрастность являются важными критериями при выборе монитора. Пожалуй, это один из немногих моментов в выборе техники, когда есть хотя бы какой-то смысл опираться на сухие цифры.

Яркость измеряется в канделах на квадратный метр. Эта фраза ничего не говорит 99% пользователям, поэтому мы немного расскажем об этом. Лампа накаливания мощностью 100 ватт имеет яркость около 100 кандел. Не стоит думать, что 1 ватт = 1 кандела, просто совпадение. С яркостью 1 канделы светит обычная свеча. Это и есть второе название канделы – свеча, которое уже не используется.

У многих читателей возник вопрос, почему яркость измеряется в кандалах на квадратный метр, а не просто в канделах. Дело в том, что если измерять яркость в обычных единицах, то чем больше будет размер диагонали экрана, тем выше будет яркость. Потребителя же в первую очередь интересует то, насколько будет интенсивно светить каждая точка экрана.

Если у монитора яркость составляет 250 кандел на квадратный метр, то вычислить абсолютное значение не сложно. К примеру, монитор с диагональю размером 23 дюйма имеет площадь поверхности около 0,2 квадратных метров. То есть, всего он будет излучать 75 кандел света. Это очень достойное значение.

Считается, что для работы с офисными приложениям требуется яркость 70-110 кд/м2, что может обеспечить почти любой современный ЖК-монитор. Для просмотра видеофильмов и игры в игры часто требуются большие значения, особенно если в игре вы бродите по подземелью и там темно.

В век ЭЛТ-мониторов многие пользователи страдали в таких ситуациях. Мониторы на основе электронно-лучевой трубки не могли достичь большой яркости, так как возможности люминофорного покрытия были ограничены. Вдобавок ЭЛТ-мониторы быстро выгорали. Сейчас это в прошлом.

С контрастностью все гораздо сложнее. Под контрастностью подразумевается отношение светимости белого пикселя и черного. Конечно, черный пиксель не может светиться, поэтому само название “черный” очень условно.

ЖК-монитор вообще не может дать черного цвета. Для примера, ЭЛТ-дисплеи это могли, так как свет там испускало люминофорное покрытие под действием потока электронов. Нет электронов – нет света, а значит, вы видите черный.

У ЖК-мониторов свет испускается диодами или лампами, а матрица только контролирует его уровень. Жидкие кристаллы не способны заблокировать свет полностью, поэтому настоящего черного цвета в ЖК-дисплеях нет. Контрастность – это отношение светимости пикселя в белом и черном состоянии. 1000:1 означает, что белый пиксель на экране в 1000 раз ярче черного.

Производителя сами не занимаются измерением контрастности, они так экономят. Они просто переписывают паспортные данные матрицы в свои паспорта. Конечно, такой “халтурный” подход не касается профессиональных моделей от NEC.

Увидеть подобные эффекты не сложно. Просто возьмите редактор PAINT, который включен в комплект любой версии операционной системы Windows и нарисуйте большой черный квадрат. Смотрите на него и выключите монитор. Если вы видите разницу, то у этого монитора с контрастностью проблемы.

Стоит отметить, что у современных моделей разницу истинного черного и подсвеченного черного цветов сложно заметить при комнатном освещении. Если вы задались целью проверить эту теорию, то лучше экспериментируйте вечером без света или при задернутых шторах.

Серьезная разница между паспортной и реальной контрастностью заключается в желании производителей поставить в паспорта мониторов как можно большие цифры. Они переписывают их у производителей матриц, так как прекрасно понимают, что реальные значения будут ниже.

На заводах по производству матриц во время тестирования всегда прикладывают к жидким кристаллам максимальные значения напряжения электрического поля, тогда как в реальности электроника мониторов может работать хуже. Не стоит сравнивать дорогое лабораторное оборудование с начинкой дисплеев стоимостью 200 долларов.

Выводы. Не стоит доверять цифрам в паспортах. Яркость можно легко оценить “на глаз”. Находясь в магазине, просто “выкрутите” яркость на максимум и вы поймете, на что способен тот или иной дисплей. Проверить контрастность куда тяжелее. Можно попробовать также “выкрутить” контрастность на максимум, и посмотреть на какую-либо очень пеструю картинку.

necmonitor.ru

Яркость и контрастность

 

Яркость и контрастность — важнейшие параметры монитора, во многом характеризирующие качество изображения на экране. Под яркостью понимается яркость белого цвета в центре экрана, под контрастностью — отношение уровня белого цвета к уровню черного. Величина максимальной яркости свидетельствуют о способности нормально продемонстрировать изображение при сильном наружном освещении.

Уровень яркости мониторов измеряют в канделах на квадратный метр. Типичные значения максимальной яркости для ЖК-мониторов от 250 до 450 кд/кв.м, для ЭЛТ-мониторов — до 250 кд/кв.м.

Яркость и контрастность тесно взаимосвязаны, это две стороны одной медали. Если монитор позволяет регулировать яркость в широких пределах, тем самым увеличивается значение контрастности.

Упрощенный метод вычисления контрастности: поделить разницу в интенсивности черного и белого цвета на интенсивность черного. Например, если максимальная яркость составляет 300 кд/м2, а минимальная — 1 кд/м2, то отношение контрастности составит (300 - 1)/1 = 299:1. Паспортное значение контрастности для ЖК-мониторов составляет до 1000:1, для типичных ЭЛТ-мониторов до 500:1.

В ЖК-мониторах в силу принципа действия ячеек (играющих роль затвора) реально увеличить яркость можно только повышением интенсивности подсветки. Увеличить контрастность можно за счет полного перекрытия затвора (ячейки), добиваясь идеально черного цвета.

Требуемая величина яркости зависит от конкретных задач и внешнего освещения. Для работы с текстом достаточно яркости 70-130 кд/кв. м, для игр — 150-200 кд/кв. м, для просмотра фильмов днем — от 300 кд/ кв.м.

Следует обратить внимание на механизм регулировки яркости монитора. В жидкокристаллических мониторах применяют разные методы: управление поляризацией жидких кристаллов в ячейках или изменение яркости подсветки. Иногда используют комбинированный метод: снижают яркость относительно некоего среднего уровня за счет поляризации, а повышают за счет роста интенсивности свечения лампы. Механизм управления яркостью за счет интенсивности подсветки работает «честно», то есть не деформирует соотношение оттенков цвета различной яркости. Управление яркостью за счет поляризации — механизм не совсем честный, поскольку искажает градации оттенков, что легко заметить по слиянию оттенков цвета в самых темных и самых светлых областях изображения.

Субъективную качественную оценку соотношения яркости и контрастности дает «прокручивание» типовых приложений при типичном для них уровне яркости. Не следует ориентироваться на паспортные значения монитора, поскольку они получены производителем на предельных установках параметров, что неприменимо в практической деятельности.

pcspravka.ru

Яркость (стр. 1 из 2)

Министерство образования Российской Федерации

Волгоградский государственный технический университет

Кафедра «Техническая эксплуатация и ремонт автомобилей»

СЕМЕСТРОВАЯ РАБОТА

по дисциплине «Основы научных исследований»

Тема: «Яркость»

Вариант: 75

Студент: Мелихов Владимир Александрович

Группа: АТ-312

Направление: 5521 «Эксплуатация транспортных средств»

Преподаватель: Зотов Николай Михайлович

Дата сдачи на проверку: ___________

Роспись студента: ___________

Волгоград 2003

СОДЕРЖАНИЕ

Характеристика яркости…………………………………………………….3

Способы, датчики и приборы, используемые для измерения яркости и их принципы работы………………………………………………………8

Примеры измерения яркости при производстве, испытании, диагностировании, техническом обслуживании и ремонте автомобилей или их элементов………………………………………11

Список литературы………………………………………………………...12

Характеристика яркости

Яркость излучающей поверхности в астрономии и в физике определяется одинаково. Это понятие применимо только для протяженных (неточечных) источников, поскольку в ней присутствует площадь излучающей поверхности. Так как сила света убывает пропорционально квадрату расстояния до источника, а телесный угол, под которым видна проекция излучающей площадки, также убывает по тому же закону, то яркость источника не зависит от расстояния до него и в астрономии часто измеряется как поток с 1 кв. секунды дуги видимой поверхности источника или же как освещенность, создаваемую таким участком видимой поверхности источника.

Если попытаться дать определение яркости, то оно может звучать так:

Яркость – это фотометрическая величина, характеризующая излучательную способность протяжённых тел в данном направлении.

Яркость тела в данном направлении определяется энергией, излучаемой в единицу времени внутри единичного телесного угла элементом поверхности тела, проекция которого на плоскость, перпендикулярную выбранную направлению, имеет единичную площадь. За единицу яркости в Международной системе единиц (СИ) принят 1 кандела на квадратный метр – яркость поверхности, каждый квадратный метр которой излучает в перпендикулярном к ней направлении в пределах угла 1 стерадиан поток, равный 1 люмену. В астрономии яркость часто измеряется видимой звёздной величиной поверхности площадью в одну квадратную секунду дуги. Ранее в Международной системе единиц (СИ) за единицу яркости принимали 1 нит (1 нт=10кд/м2 ).

Для примера яркость ночного неба составляет около 21.6 квадратной секунды дуги, то есть около 2·10 -4 нт, яркость видимой поверхности Солнца сотавляет около 150000 квадратных секунд дуги (примерно 1,4 нт), а средняя яркость полной Луны - примерно 0.25 квадратных секунд дуги (около 2,3·10-6 нт).

Если подходить к определению яркости с точки зрения физического смысла, то можно дать следующее определение: Яркость поверхности – световой поток d Ф , исходящий из площадки dS в рассматриваемом направлении, отнесенный у единице телесного угла и к единице видимой величины площадки, т. е. dS cosq :

,

где dZ = d Ф/ d W – сила света площадки dS (рис. 1). Буква В снабжена индексом q , так как яркость зависит от угла q , под которым рассматривается площадка dS .

Рис. 1

При рассмотрении полного светового потока, посылаемого единицей светящейся поверхности в одну сторону необходимо ввести такое понятие как светимость

Светимостью К называется полный световой поток, посылаемый единицей светящейся поверхности в одну сторону, т. е. в телесный угол W =2 p . Единица измерения светимости в Международной системе единиц (СИ) такая же, что и единица освещенности, то есть люмен на квадратный метр (лм/м2 ). Так как световой поток с единицы поверхности в телесный угол d W равен d Ф= B q cos q d W , то

(1.15)

Для поверхностей, излучающих по закону Ламберта (т. е. поверхностная яркость не зависит от направления излучения), яркость В q =В не зависит от угла q , поэтому

К= p В

Так как световой поток, который в том числе характеризует яркость, прежде всего, воспринимается человеком посредством органов зрения, то есть глаз, то необходимо рассмотреть как он воспринимается человеком. При действии света на глаз возникает раздражение сетчатки. От сетчатки возбуждение передается в зрительный нерв и далее в мозг, вызывая ощущение света. Свойство зрительного ощущения, согласно которому предметы кажутся испускающими больше или меньше света, называется светлотой . Как мы уже знаем, на сетчатку попадают только определенные доли всей световой энергии, испускаемой предметами в окружающее пространство. Они выражаются величинами яркостей . Таким образом, интенсивность светового раздражения определяется величинами яркостей, а интенсивность светового ощущения — величинами светлот. Чем больше яркость, тем больше светлота. Поэтому можно сказать, что светлота есть мера ощущения яркости.

В повседневной жизни между понятиями яркости и светлоты часто не делают отчетливого различия, но при изучении зрительного восприятия света их необходимо четко различать. Яркость — объективная величина, ее можно измерить соответствующим прибором (как вы уже догадались, он называется яркометром). Светлота — величина субъективная, как и все ощущения. Например, лист белой бумаги на солнечном свету летом имеет яркость порядка 30000 нт, а при свете настольной лампы — порядка 10–30 нт. Однако никто не скажет, что один и тот же лист бумаги в одном случае более светлый, чем в другом. В числе ряда особенностей зрительного восприятия здесь проявляется его способность отделять характеристику освещения от характеристики освещаемого предмета. Это явление относится к разряду психологических, и, в частности, связано с памятью.

Из сказанного следует, что светлота не может быть непосредственно измерена и выражена абсолютными числами. Однако возможна количественная оценка, выражаемая словами: больше, меньше, равно, намного больше или меньше, едва различается. Причем этим выражениям можно вполне определенно сопоставить разности измеряемых яркостей. Таким образом можно изучить зависимость ощущения от раздражения.

В середине прошлого века немецкий физик Вильгельм Эдуард Вебер (1804–1891) ставил опыты для того, чтобы найти зависимость между величинами раздражения и ощущения. В 1851г. Вебер открыл закон, общий для всех органов чувств: и данная величина раздражения (яркость света, вес, сила звука, и др.) является мерой замечаемости его изменения.

Говоря проще, мерой чувственно воспринимаемых различий является не минимальная величина разности двух раздражений при данном уровне раздражения, а относительная величина, которая остается неизменной при изменении раздражения.

DP/P = const

Позднее, в 1858г., Густав Фехнер (1801–1887, немецкий физик и врач) проводил опыты по зрительному различению яркостей. Он установил, что в случае яркостей отношение DP/P постоянно в большом практически используемом диапазоне яркостей. Фехнер вывел математическую формулу зависимости изменения величины ощущения от изменения величины яркости.

DS = k DlgP

Так выглядит закон Вебера–Фехнера (k~100).

Эта формула имеет важное значение. Она, в частности, объясняет, почему надо пользоваться величинами оптических плотностей, а не соответствующими им величинами коэффициентов пропускания и отражения. Действительно, если построить шкалу яркостей, оптические плотности которой составляют равномерный ряд, то она будет восприниматься как равномерная шкала светлот.

Ранее рассматривалась разница двух яркостей при абстрагировании от их окружения, неявно предполагая, что разница между ними много меньше их значений. При рассмотрении реальных образов это не так — мы имеем некоторый диапазон яркостей и некоторый средний уровень яркости — и наше восприятие изменится.

Было установлено, что в натуральном объекте с максимальной яркостью 6000 нт, интервалом яркостей 2.3 (200:1) и уровнем адаптации глаза 1500 нт человеческий глаз может различить 100 уровней яркости. Эти показатели соответствуют ландшафту при среднем уровне освещения его дневным светом. В объекте с максимальной яркостью 40 нт, интервалом яркостей 1.6 (40:1) и уровнем адоптации 10 нт глаз может различить около 70 уровней яркости. Эти показатели соответствуют фотоотпечатку на бумаге выше упомянутого ландшафта и рассматриваемого при среднем искусственном освещении.

Способы, датчики и приборы, используемые для измерения яркости и их принципы работы

Для измерения яркости служит прибор яркомер. Яркомер предназначен для измерения яркости участков рабочего поля экрана. Размеры фотометрируемых участков в зависимости от формы должны быть следующих размеров: круглые — диаметр от не более 0,1 мм до не менее 20 мм, прямоугольные — ширина не более 0,05 мм, длина — от 2,0 до 5,0 мм. Пределы измерения — от не более 1,0 до не менее 200 кд/м2 (основной диапазон) с расширением верхнего предела измерения за счет калиброванного ослабителя света. Основная погрешность измерения должна составлять не более 10 %. Погрешность коррекции относительной спектральной чувствительности фотоприемника под относительную спектральную световую эффективность монохроматического излучения для дневного зрения — не более 10 %.

mirznanii.com

Характеристики мониторов - на что обращать внимание при выборе

Выбор любого компьютера или какого-либо комплектующего начинается с определения критериев, коими в данном случае являются технические характеристики. Согласитесь, при покупке, например, монитора определения «чтобы хорошо показывал» мало, надо знать, какого размера нужен дисплей, с каким разрешением, как он будет подключаться, для каких целей использоваться (для игр, офисной работы). Чтобы ответить на эти и целый ряд других вопросов надо знать, какие характеристики мониторов есть, какие важны, какие не очень, а о чем обычно в официальных спецификациях умалчивается.

Содержание:

Характеристики мониторов

Давайте кратко перечислим те характеристики, которыми обладает каждый монитор без исключения. Сделаем небольшой гайд с кратким описанием, что это такое, насколько важен параметр, на что влияет и к каким значениям желательно стремиться.К сожалению, отнюдь не все характеристики можно встретить в описаниях на монитор, будь то экран ноутбука или дисплей для стационарного ПК. В то же время среди тех параметров, которые обычно скрываются, есть весьма интересные, которые могут повлиять на качество изображения.

1. Тип матрицы

Это указывается почти всегда. Основные используемые сейчас типы матриц – это TN, IPS, VA и их модификации. Более подробно можно прочитать в другом моем материале.

2. Разрешение экрана

Это размер экрана по вертикали и горизонтали в точках (пикселях). Наиболее популярные и часто встречающиеся в ноутбуках экраны имеют разрешение FullHD (1920×1080). Помимо этого, есть еще большое количество других разрешений, некоторые из которых встречаются чаще, некоторые реже.

Физически эта характеристика означает количество пикселей на экране, из которых состоит изображение. Чем больше пикселей на единицу площади экрана, тем, в теории, более качественная картинка, т. к. пиксели становятся меньше и все менее и менее заметными. Пропадает «зернистость» изображения.

В то же время не следует забывать и про стоимость. Чем больше разрешение, тем выше цена (в данном случае я оперирую неким усредненным дисплеем, и не сравниваю высококачественный экран с меньшим разрешением с бюджетным, но с более высоким разрешением).

Если речь идет об игровом ноутбуке или мониторе, то следует учитывать и другой момент. При использовании видеокарт класса GTX 1070/1080 практически в любой игре вы сможете выставить настройки графики на максимум или близко к нему.Если же экран имеет разрешение 4K (3840 х 2160), то для того, чтобы получить удовольствие в играх от картинки на максимальных настройках графики, видеокарт GTX 1070/1080 уже может и не хватить. Может понадобиться установка пары таких видеокарт, а то и больше.

3. Яркость

Указывается в спецификациях на любой монитор. Это величина, измеряемая в кд/м2, (канделах на квадратный метр). Собственно, что это за характеристика, понятно из названия. Строго говоря, чем выше значение этого параметра — тем лучше. Отрегулировать экран, снизив его яркость, не составляет труда.

Что касается экранов ноутбуков, то этот параметр важен еще по той причине, что сама конструкция этого вида компьютера допускает использование его не только в условиях офиса или дома, но и в поездках, на улице, где яркое солнце или иной источник освещения будет засвечивать изображение на экране.

При небольших значениях яркости пользоваться таким экраном при ярком свете будет сложно. Если максимальное значение соответствует 300 кд/м2 или даже выше, то это означает, что яркий солнечный свет не станет помехой. В конце концов, лучше иметь запас по яркости, т. к. ее всегда можно уменьшить, а вот добавить того, чего нет – увы.

4. Контрастность

Этот параметр отражает отношение уровня яркости белого цвета к черному. Обычно его указывают в качестве отношения, например, 1000:1. Как и с яркостью, чем выше это значение – тем лучше. Изображение будет более естественным.

Контрастность зависит от технологии изготовления матрицы. Так, IPS экраны уступают по этому параметру экранам, выполненным по технологии VA, не говоря уже об OLED, квантовых точках и т. п.

Условно можно принять, что экраны с контрастностью 500:1 и менее можно отнести к посредственным. Лучше ориентироваться на значения 1000:1 и выше. Особенно если в своей работе вам приходится иметь дело с редактированием изображений, колоризацией и т. п.

5. Динамическая контрастность

Этот параметр указывается почти всегда, по крайней мере для обычных, не ноутбучных, мониторов. Согласитесь, что не привести в спецификации, например, значение 100000000:1 –упущение. Большие цифры привлекают внимание и нравятся потенциальным покупателям (при условии, что это не цена).

Что означает эта характеристика? Это результат работы электроники монитора по подстройке изображения в каждый момент времени с целью улучшения «картинки». Происходит управление яркостью ламп с целью добиться высокой контрастности изображения.

Я бы не стал обращать особого внимания на этот параметр, т. к. это скорее маркетинг, чем реальная характеристика, говорящая о достоинствах того или иного монитора. Тем более, что какой дисплей не выбери, количество нулей в значении динамической контрастности сосчитать трудно, да и не надо.

6. Глубина черного цвета

А вот этот параметр редко указывается в технических характеристиках, хотя на качество изображения влияет. При использовании монитора в обычных условиях, при дневном свете или искусственном освещении, оценить этот параметр может оказаться сложно.

Другое дело, если вывести на экран картинку черного цвета, то при низком уровне внешнего освещения, или в полной темноте станет заметно, что черный цвет какой-то не совсем черный, а может даже больше походить на серый. Некоторые области экрана могут оказаться ярче соседних.

Это все связано с тем, что для получения изображения на экране ЖК мониторов используется подсветка, и для отображения черного цвета она не выключается, а блокируется поворотом кристаллов таким образом, что они не пропускают свет.

К сожалению, свет они ПОЧТИ не пропускают, часть света все же преодолевает этот барьер. На приведенной выше картинке можно заметить, что черный цвет имеет все же какой-то серый оттенок.

Опять-таки, многое зависит от технологии изготовления матрицы. Черный цвет на экранах VA более похож на черный, чем, например, на IPS. Конечно, многое зависит от качества используемой матрицы, настроек, регулировок, но в целом это так. Лучше всех с черным цветом справляются экраны OLED, на квантовых точках и прочих новых технологиях.

С определенной долей погрешности урове

andiriney.ru

методика тестирования экранов / Мониторы и проекторы

Наша методика тестирования экранов смартфонов и планшетов состоит из четырёх сравнительно несложных тестов:

  • Измерение максимальной яркости чёрного и белого полей, а также вычисление контрастности по полученным значениям;
  • Определение цветового охвата и точки белого;
  • Измерение цветовой температуры;
  • Измерение гаммы дисплея по трём основным цветам (красный, зелёный, синий) и по серому цвету.

Результаты каждого из этих тестов характеризуют отдельные особенности экрана, поэтому при окончательной оценке качества дисплея стоит воспринимать все четыре теста сразу, а не какой-либо из них в отдельности.

Для определения каждого параметра используется колориметр X-Rite i1Display Pro и программный комплекс Argyll CMS. В этом материале мы расскажем про каждый тест, а также объясним, как читать и понимать полученные нами графики. Итак, поехали!

⇡#Определение максимальной яркости чёрного и белого полей, а также вычисление статической контрастности

На первый взгляд, этот тест кажется самым простым. Для того чтобы измерить яркость белого цвета, мы выводим на экран абсолютно белую картинку и измеряем яркость при помощи колориметра — полученное значение и будет называться яркостью белого поля. А для того чтобы измерить яркость чёрного, мы проделываем то же самое с абсолютно чёрной картинкой. Яркость белого и чёрного полей измеряется в кд/м2 (канделах на квадратный метр). Контрастность узнаётся и того проще: поделив яркость белого поля на яркость чёрного, мы получаем искомое значение. Величина статической контрастности у практически идеального экрана смартфона или планшета составляет 1000:1, хотя результаты 700:1 и выше можно также назвать отличными.

К сожалению, простым этот тест можно назвать только с виду. В последние годы производители смартфонов пошли по тому же пути, что и производители телевизоров: они стали добавлять различные «улучшайзеры» изображения в прошивку аппаратов. Это не удивительно, а скорее закономерно, потому что почти все крупнейшие производители смартфонов занимаются разработкой телевизоров и/или мониторов.

В случае жидкокристаллических дисплеев (с OLED все ровно наоборот) эти «улучшайзеры» работают, как правило, следующим образом: чем меньше на дисплее светлых точек, тем ниже яркость подсветки. Сделано это, во-первых, для того, чтобы обеспечить большую глубину чёрного на тех изображениях, в которых много этого цвета. А во-вторых, чтобы не тратить зря электроэнергию: если изображение в основном тёмное, нет смысла светить подсветкой на полную катушку — логично её приглушить.

Проблема в том, что реальная контрастность от этого не повышается: при использовании «улучшайзера» светлые участки на тёмном изображении тоже станут чуточку темнее, так что соотношение яркости белого и чёрного в лучшем случае останется таким же, как и при полной подсветке. То есть если на дисплее, оснащённом динамической оптимизацией подсветки, измерить светимости белого и чёрного полей, как описано выше, а потом просто поделить одно на другое, то получится не настоящее значение контрастности, а довольно абстрактная цифра. Чаще всего — очень заманчивая (вроде 1500:1), но не имеющая ничего общего с реальной контрастностью.

Для того чтобы обойти эту проблему, мы отказались от картинок, полностью залитых чёрным или белым цветом в пользу изображения, состоящего на 50% из белого и на 50% из чёрного. Таких картинок у нас две (50-50 и 50-50-2 на рисунке ниже), соответственно, мы измеряем значения светимости белого и чёрного полей как в верхней, так и в нижней частях дисплея — а вычисленные после деления этих чисел значения контрастности усредняем.

Полный набор тестовых изображений для измерения характеристик LCD-дисплеев

Оптимизация вносит изрядную погрешность в том числе и в измерение других параметров экрана — цветовой температуры и гамм. Поэтому для получения более корректных результатов мы и для этих тестов используем не полностью залитые цветом картинки, а квадраты, занимающие около 50% от площади экрана. Фон при этом заливается белым или чёрным цветом, чтобы соотношение светлых и тёмных точек на дисплее было более равномерным для всех тестовых изображений и динамическая подстройка подсветки вносила минимальные искажения в результаты.

Такой подход позволяет повысить реалистичность полученных значений контрастности и прочих параметров дисплея.

⇡#Измерение цветового охвата

Наш глаз способен воспринимать огромное количество цветов, тонов, полутонов и оттенков. Вот только самые современные дисплеи мобильных устройств — как и их «большие братья», экраны телевизоров и мониторов — пока ещё не способны воспроизвести всё это буйство цвета. Цветовой охват любого современного дисплея очень сильно уступает части спектра, видимой человеческим глазом.

На графике ниже представлен примерный диапазон видимой (оптической) области спектра, или «цветового охвата человеческого глаза». Белым треугольником на нём выделено цветовое пространство sRGB, которое было определено компаниями Microsoft и HP в не очень далёком 1996 году как стандартное цветовое пространство для всего компьютерного оборудования, предполагающего работу с цветом: мониторов, принтеров и так далее.

По сравнению со всей оптической областью спектра цветовой охват sRGB не так уж и велик. А уж по сравнению с полным спектром электромагнитного излучения (не показанном на графике) — и вовсе песчинка в песочнице

Если честно, в работе с цветом всё далеко не просто, крайне запутанно и не так хорошо стандартизировано, как того хотелось бы. Однако, пусть и с изрядной долей условности, можно сказать, что большая часть цифровых изображений рассчитана на использование цветового пространства sRGB.

Из этого есть такое следствие: в идеальном случае цветовой охват дисплея должен совпадать с цветовым пространством sRGB. Тогда вы будете видеть изображения именно такими, какими их задумали их создатели. Если цветовой охват дисплея меньше, то цвета теряют насыщенность. Если больше — то становятся более насыщенными, чем нужно. «Мультяшная» картинка с перенасыщенными цветами, как правило, выглядит наряднее, но это не всегда уместно.

Здесь и далее: все различия примеров изображений утрированы для большей наглядности. То есть количественно они не обязательно соответствуют той разнице, которую можно видеть на реальных дисплеях, а просто показывают общие тенденции

Хорошими значениями цветового охвата можно считать показатели от 90 до 110% sRGB. Дисплеи, цветовой охват которых уже 90%, выдают слишком блеклую картинку. Экраны с более широким цветовым охватом могут ощутимо перенасыщать цвета и делать картинку излишне красочной.

Не очень удачными следует считать и такие настройки дисплея, когда треугольник цветового охвата по площади близок к sRGB, но сильно искажён: это означает, что, вместо предусмотренного стандартом цвета, на дисплее вы увидите какой-то существенно отличающийся от него цвет. Например, оливковый вместо зелёного или морковный вместо насыщенного красного.

Набор изображений для определения цветового охвата

Также во время измерения цветового охвата мы находим координаты точки белого и указываем её на графике. Более подробно о ней мы поговорим в следующем разделе.

⇡#Определение цветовой температуры

Идеальная цветовая температура белого цвета составляет 6500 кельвин. Это связано с тем, что именно такой цветовой температурой характеризуется солнечный свет. То есть такой белый цвет является наиболее естественным и привычным человеческому глазу. Более «тёплые» оттенки белого имеют температуру ниже 6500 К, например 6000 К. Более «холодные» — выше, то есть 8000 или 10000 К и так далее.

Отклонения как в ту, так и в другую сторону, в принципе, нежелательны. При меньшей цветовой температуре изображение на экране устройства приобретает красноватый или желтоватый оттенок. При более высокой — уходит в голубые и синие тона. Также следует иметь в виду, что точка белого у дисплея может в принципе не попадать на кривую Планка, определяющую именно белый цвет. На таком дисплее белый имеет совсем уж нежелательный зеленоватый (очень характерный недостаток ранних AMOLED-дисплеев) или пурпурный оттенок.

В идеале для всех градаций серого — которые по сути представляют собой тот же белый цвет, но меньшей яркости, — цветовая температура и координаты цвета должны быть одинаковыми. Если они отличаются в незначительных пределах, то ничего страшного в этом нет. Если же они резко меняются от градации к градации, то на таком дисплее разные участки чёрно-белых изображений приобретают разный оттенок и в целом получаются слегка «радужными». Это не очень хорошо.

Тестовые изображения, используемые для измерения цветовой температуры

Исключение составляют самые тёмные градации серого: на практически чёрном цвете заметить паразитный оттенок практически невозможно, так что ничего страшного в завышенной цветовой температуре, например, полностью чёрного цвета нет — он может быть сколько угодно холодным, вы этого всё равно не увидите.

Мы измеряем цветовую температуру для градаций 10, 20, 30 ... 100% от полностью белого цвета. В результате появляется график следующего вида:

⇡#Измерение гаммы дисплея по трём основным цветам (красный, зелёный, синий) и по серому цвету

Если не вдаваться в глубокую теорию, то графиками гамма-кривых можно назвать отношение входящего сигнала к измеренному сигналу, отображаемому монитором.

Набор изображений для измерения гаммы

К сожалению, идеальных дисплеев не существует, поэтому любой цвет на экране отображается с погрешностью, которую вносит ЖК-матрица. Именно эту погрешность мы и будем измерять. Для того чтобы наши измерения не оказались «сферическими в вакууме», на всех графиках гамма-кривых присутствует эталонная кривая, нарисованная чёрным цветом. За эталон принята гамма 2,2, которая используется в цветовых пространствах sRGB, Adobe RGB.

 

На примерах графиков видно, что полученные нами кривые далеко не всегда совпадают с эталонными. Если гамма-кривая проходит ниже эталонной, то это значит, что полутона на таком дисплее недосвечиваются, выглядят темнее нужного. При этом особенно могут страдать тёмные участки изображения — детали в них теряются. Если кривая идет выше эталонной — то полутона пересвечиваются и теряются уже детали в светлых частях изображения.

Также встречаются гамма-кривые s-образной и z-образной формы. В первом случае изображение получается более контрастным, при этом детали теряются как в светлых частях, так и в тёмных. Во втором случае — наоборот, контрастность занижается, хоть и с выгодой для детальности. Все случаи несоответствия гамм по-своему плохи, так как из-за них картинка на экране получается изменённой по сравнению с оригиналом.

⇡#Выводы

Для того чтобы отличить хороший экран от плохого, надо смотреть на все диаграммы и графики сразу, одной или пары здесь недостаточно.

С яркостью белого всё просто — чем она больше, чем ярче будет дисплей. Яркость на уровне в 250 кд/м2 можно считать нормальной, а все значения выше — хорошими. С яркостью чёрного дела обстоят наоборот: чем она ниже, тем лучше. Что же касается контрастности, то про неё можно сказать почти то же, что и про яркость белого: чем выше величина статической контрастности, тем лучше дисплей. Значения около 700:1 можно считать хорошими, а около 1000:1 — и вовсе великолепными. Отметим, что у AMOLED- и OLED-экранов чёрный почти не светится — наш прибор просто не позволяет измерить столь малые значения. Соответственно, мы считаем их контрастность почти бесконечной, а на деле — если вооружиться более точным прибором — можно получить значения вроде 100 000 000:1.

С цветовым охватом дела обстоят немного сложнее. Принцип «чем больше — тем лучше» здесь уже не действует. Следует ориентироваться на то, насколько хорошо совпадает треугольник цветового охвата с цветовым пространством sRGB. Полностью идеальные в этом смысле дисплеи практически не встречаются в мобильных устройствах. Оптимумом же можно считать такой охват, который занимает от 90 до 110% sRGB, при этом очень желательно, чтобы форма треугольника была близка к sRGB. Также на графике цветового охвата стоит посмотреть на расположение точки белого. Чем она ближе к эталонной точке D65, тем лучше баланс белого у дисплея.

Ещё одной мерой баланса белого является цветовая температура. У отличного монитора она составляет 6 500 К у насыщенного белого цвета и почти не изменяется на разных оттенках серого. Если температура ниже, то экран будет «желтить» изображение. Если выше — то «синить».

С гамма-кривыми всё ещё проще: чем ближе измеренная кривая к эталонной, которую мы на графиках рисуем чёрным, тем меньше погрешностей в изображение вносит матрица дисплея. Мы прекрасно понимаем, что всё это так сходу запомнить непросто. Поэтому мы будем ссылаться на данный материал в будущих обзорах. Так что информация о том, как следует читать приводимые нами графики, всегда будет у вас под рукой.

Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

3dnews.ru

Светодиодам быть! Прежде, чем вы купите светодиодный экран

Дэвид Филвинд

Мы продолжаем публикацию статьи Дэвида Филвинда – менеджера по международному маркетингу компании Lighthouse Technologies, начатой в 3 выпуске нашего журнала, о наиболее важных параметрах светодиодных экранов, которые должны принимать в расчет все покупатели и операторы. Хотя ряд изложенных в статье фактов могут показаться хорошо знакомыми постоянным читателям нашего журнала, следует напомнить, что лишь сочетание всех разнообразных параметров дает в сумме видеоэкран хорошего качества, надежный и долговечный. А компаний, способных удовлетворить всем этим требованиям, на рынке сегодня не так уж много.

Разрешение видеоэкрана

Если вы хотите получить качественное изображение на видеоэкране большого формата - купите экран с самым высоким разрешением, которое вы только можете себе позволить. Разрешение светодиодного экрана определяется общим количеством вертикальных и горизонтальных пикселей (точек, которые формируют целое изображение). Видеосигнал, который будет воспроизводить видеоэкран, имеет оригинальное разрешение приблизительно 486/576 (NTSC/PAL-SECAM) по вертикали и где-то от 240 до 720 по горизонтали (в зависимости от качества источника сигнала).

Чтобы воспроизводить эти сигналы без потери разрешения изображения, Вам необходимо минимальное разрешение видеоэкрана приблизительно 648 x 486 (NTSC) или 768 x 576 (PAL-SECAM). Если вы будете использовать экран с меньшим количеством пикселей, чем ваш исходный видеоматериал, то воспроизводимые изображения будут иметь меньшее разрешение, чем источник сигнала.

Однако, если видеоэкран разработан правильно, он все еще может воспроизводить приемлемое видеоизображение. Экраны с приблизительно 1/3 разрешения VGA могут обеспечить достаточное по качеству видеоизображение. Таким образом, экрана с разрешением около 200x150 пикселей вполне достаточно для получения приемлемого изображения. Например, чтобы достигнуть разрешения 640 x 480 (VGA) на экране среднего размера (3 м х 2,25 м), нам понадобился бы экран с пикселями, расположенными друг от друга на расстоянии 4,5 мм. (Это расстояние между пикселями называют шагом между пикселями и обычно измеряют в миллиметрах.)

Светодиодный экран, светодиодный модуль, светодиодный пиксель

Как правило, шаг между пикселями для внутренних экранов (экраны, устанавливаемые в помещениях) - 6, 10, 15 и 20 мм. Шаг между пикселями для наружных экранов - 15, 20, 25, 30 и 38 мм - наружные экраны обычно больше по размеру, чем внутренние аналоги, поскольку зона обзора у наружных видеоэкранов, как правило, больше. Мы могли бы, например, использовать светодиодный экран с шагом между пикселями 6мм и другой, немного большего размера, экран, чтобы достигнуть полного разрешения VGA, но более эффективное по затратам решение заключается в использовании большего шага с более низким разрешением экрана. Чем меньше шаг между пикселями, тем дороже экран, таким образом, идеальное решение всегда представлять собой комбинацию стоимости и разрешения.

Поскольку большинство светодиодных экранов состоят из отдельных блоков (светодиодных модулей) со светодиодами, смонтированными на печатных платах (например: 16 x 16 или 32 x 32 пикселей), то полный размер экрана и соответственно его разрешение определяются общим числом блоков (модулей) по горизонтали и вертикали. Чем больше шаг между пикселями видеоэкрана, тем сильнее проявляется пикселизация изображение - вы начинаете видеть структуру пикселя, что очень напоминает процесс рассматривания газетной фотографии под лупой.

Расстояние между зрителем и видеоэкраном должно стать основополагающим фактором при рассмотрении всех этих компонентов. С появлением на рынке SMD (surface mounting device – приборы для поверхностного монтажа) светодиодов (три светодиода красный, зеленый и синий в одном корпусе) стало возможно производить экраны с шагом 10, 6 и даже 4,5 мм. Шаг 12 мм между пикселями является пределом для обычных светодиодов.

При шаге между пикселями 12 мм (при использовании обычных светодиодов) видеоэкран имеет слабый контраст и выделяет много тепла. Выбор шага между пикселями и разрешения экрана диктуют физические ограничения размера видеоэкрана, зона обзора и углы обзора, и, конечно же, бюджет – ведь стоимость экрана определяется его площадью.

Расстояние смешивания цветов

При рассмотрении пикселей вблизи светодиоды RGB (красный, зеленый, синий) проявляются как независимые точки. Расстояние от экрана, на котором происходит преобразование трех отдельных цветов в один цвет, известно как "расстояние смешивания цветов". Способность к лучшему смешиванию цветов позволяет изображениям казаться ясными и четкими вблизи и является важнейшим фактором для внутренних видеоэкранов. Для наружных экранов с обычными светодиодами типа лампы, расстояние смешивания цветов может быть вычислено по следующей формуле: шаг между пикселями умножить на 500.

Для внутренних светодиодных экранов с SMD светодиодами это число равно 250, поскольку светодиоды расположены близко друг к другу. Это расстояние иногда ошибочно называют минимальной зоной обзора. Например, для экрана с шагом 10 мм между пикселями расстояние будет равно 10x250 = 2,5 м.

Минимальное расстояние наблюдения. Это значение может быть вычислено следующим образом: шаг между пикселями умножить на 750 - 1000. При этом расстоянии наблюдается сглаженное изображение. Более близкое рассмотрение приведет к эффекту “распада” изображения на отдельные точки (пиксели). Например, для видеоэкрана с шагом между пикселями 19 мм это расстояние будет равно 19 x 1000 = 19 м.

Максимальное расстояние наблюдения. Обычно это 20-30 высот экрана. Например, для видеоэкрана высотой 4,57 метра: 30 x 4,57 м = 137 м.

Видеообработка

Если у Вас есть два конкурентоспособных светодиодных экрана подобной технологии, того же самого размера и одинакового разрешения, можно оценить различия в производителях светодиодов, управляющей электронике и методах монтажа светодиодов. Стандартный видеосигнал не может быть непосредственно показан на светодиодном экране без предварительной обработки.

Качество этой видеообработки чаще упускается из виду потенциальными покупателями. Здесь применимо первое правило для любой трансляции: шум на входе = шуму на выходе. Видеоизображение состоит из множества горизонтально сканируемых линий (строк), но они все не появляются на телевизионном экране в одно и то же время. В первую 1/60-ую секунды (1/50-ую для PAL-SECAM) показываются нечетные строки, а во вторую, 1/60-ую секунды, показываются четные строки.

Все телевизоры работают по этому принципу, и мы называем это черезстрочной разверткой. Поскольку большинство видеоэкранов не использует непосредственно этот видеосигнал, мы должны сначала убрать черезстрочную структуру из видеосигнала. Самый простой способ сделать это состоит в том, чтобы взять первый набор строк, называемый полем, удвоить его, и показать на экране, игнорируя второе поле.

Некоторые дешевые видеопроцессоры делают это и отбрасывают половину первоначальной информации из изображения. Более сложные видеопроцессоры запоминают информацию в строках первого поля и затем объединяют ее с информацией в строках второго поля. Тогда Вы можете показать на видеоэкране полноценный кадр. Однако, если объект на экране перемещался быстро, он может оказаться в другом положении во втором поле, и это может привести к недопустимым видеоэффектам (мерцанию).

Решение этой проблемы требует интерполяции двух наборов строк из первого и второго полей кадра изображения в реальном масштабе времени, и, наконец, мы должны масштабировать изображение, чтобы оно соответствовало разрешению видеоэкрана, которое обычно отличается от разрешения источника видеосигнала. Комбинация этих процессов, особенно масштабирование, требует большой и мощной видеообработки, чтобы получить чистый, без артефактов и мерцаний, видеосигнал.

Обычно это делается выделенным видеопроцессором, который стоит довольно дорого, если вы хотите получить действительно хороший результат. Есть значительные различия в том, как производители видеоэкранов обрабатывают видеосигнал источника для показа на экране, и получить эту информацию от изготовителей порой превращается в весьма нелегкий процесс. Но это того стоит, так как обработка видеосигнала может привести к нежелательным различиям в качестве показанного на экране изображения.

Яркость и контраст

Единица измерения яркости светодиодного экрана - нит (кд/м2). Чем больше его значение, тем выше яркость видеоэкрана. Как правило, яркость для внутренних экранов должна быть не менее 1 000 нит, для наружных экранов - 5 000 нит или больше. Яркость измеряется под нормальным углом к экрану, используя хромометр - “измеритель яркости” (например, модель Minolta CS-100a).

Требуемая яркость светодиодного экрана, в зависимости от внешней освещенности Шкала цветовых температур

Цветовая температура видеоэкрана должна быть обычно 5000°К для внутренних экранов, и 6500°К для наружных экранов. С установленной цветовой температурой, изображение «белого поля» должно быть измерено в нескольких точках (обычно 12, одно измерение в центре и равномерно по экрану) на расстоянии нормальной минимальной зоны обзора. Затем на экран подается изображение «черного поля» и измеряется яркость отраженного от экрана окружающего света (достаточно одного измерения в центре экрана).

Яркость видеоэкрана – это среднее из 12 измерений “белого поля” минус яркость отраженного света на “черном поле”. Угол обзора обычно определяется по точке, где яркость экрана составляет 50 % от максимума. Если вы будете идти вдоль экрана, то вы будете видеть изменение яркости, и желательно измерить углы обзора на 3-х основных цветах и на белом, чтобы убедиться, что цвет остается однородным подо всеми углами обзора.

Светодиодные экраны имеют проблему, которая является уникальной для этой технологии и называется “shouldering” (загораживать плечом), когда изменение цвета вызвано тем, что один светодиод блокирует (загораживает) другой светодиод на критических углах обзора.

Изменение угла обзора светодиодного экрана Процент деградации светодиодов видеоэкрана

Углы обзора должны действительно включать изменения цвета, и если существенное цветовое изменение происходит прежде, чем яркость падает до 50%, то это и есть угол обзора. Добавление козырьков между пикселями или рядами светодиодов уменьшает засветку видеоэкрана другими источниками света, и увеличивает контрастность. Это также уменьшает вертикальный угол обзора, но обычно это не является проблемой для большинства случаев применения светодиодных видеоэкранов.

Если производители видеоэкрана используют большие токи для управления светодиодами, они могут указать яркость экрана свыше 8000 нит. Но проблема состоит в том, что большие токи управления приводят к более быстрой деградации светодиодов и однородность яркости экрана может быстро измениться. Обычно “время жизни” светодиодов колеблется в диапазоне от 20 000 до 100 000 часов.

Эти цифры являются действительными, если они определены при фактических токах управления светодиодами, которые будут использоваться в реальных условиях показа и, конечно, при измерении яркости экрана. Проводя оценку видеоэкрана большого формата, всегда спрашивайте рекомендации и у изготовителя, и у фирмы, осуществляющей монтаж. Убедитесь, что предыдущие клиенты, купившие у фирмы видеоэкран, находятся в ситуации схожей с вашей (например: если вы покупаете внутренний экран, то сравнение с наружным экраном не имеет смысла).

Прежде, чем вы купите светодиодный экран

  • оцените размер и место, где вы собираетесь установить экран
  • определите минимальное расстояние наблюдения
  • определите, сколько и каких типов источников сигнала вы будете использовать
  • определитесь, будет экран прикреплен к данному месту, либо будет перемещаться на другие места

Определение этих факторов заранее позволит изготовителю/поставщику оценить необходимый шаг между пикселями светодиодного экрана и его характеристики. Когда планируете бюджет для покупки видеоэкрана, и особенно светодиодного экрана, вы должны сознавать, что без анализа контента, который вы будете показывать на экране, финальный результат может оказаться плачевным.

Это хорошее правило – сначала определить контент для экрана и сделать образец в формате, в котором вы планируете осуществлять показы. В частности сцены с большим количеством динамики и панорам создадут определенные проблемы для процессора видеообработки. Обращайте внимание на нежелательные шумовые помехи на больших частях экрана одного цвета (особенно черные или очень темные области изображения).

Всегда помните, что презентационные материалы производителей видеоэкранов предназначены для того, чтобы подчеркнуть их лучшие стороны, и только Вам решать, как заставить их доказать, насколько действительно хорош этот экран. Тестовые образцы для проверки цвета, оттенков серого и движения весьма существенны. Возьмите их с собой для тестирования видеоэкрана в формате, который вы будете использовать на Вашем экране.

Когда вы остановили свой выбор на продукции 2 или 3 компаний, вы должны серьезно рассмотреть конкурирующие экраны, возможно установив их рядом и подключив их к одному источнику видеосигнала. Такое тестирование конкурирующих светодиодных экранов действительно может быть очень недешевым, но это единственный путь реально сравнить продукты конкурентов. Поставщики, отказывающиеся участвовать в таком тестировании своих видеоэкранов, должны заставить Вас задуматься о том, насколько самоуверенны они в своих экранах, и на что будет походить их техническая поддержка после продажи светодиодного экрана!

www.screens.ru

Как пользоваться и проводить измерения люксметром

Люксметр – прибор для измерения освещенности, яркости и пульсаций. Он необходим для определения качественных характеристик света. Тусклое освещение и высокий коэффициент пульсации вызывают напряжение органов зрения, что негативно сказывается на общем состоянии организма: появляется усталость, необъяснимая депрессия, другие неприятные ощущения. Главный элемент люксметра – фотодатчик. Попадающие на него лучи света передают свою энергию электронам, в результате чего возникает ток определенной силы, характеризующий степень яркости или освещенности.

Из этой статьи вы узнаете, как пользоваться люксметром, зачем нужно проводить измерения и какие меры необходимо предпринять, чтобы освещение вашего рабочего места, квартиры, загородного дома, дачи и других мест пребывания, соответствовало санитарным нормам. Мы рассмотрим измерение коэффициента пульсаций, освещенности и яркости – условия, при которых необходимо определять эти параметры, а также их влияние на человеческий организм.

Измерение коэффициента пульсаций

Коэффициент пульсации потока света – показатель, характеризующий неравномерность светового потока. Различают пульсацию освещенности и пульсацию яркости. Обе характеристики измеряют в процентах. Допустимые уровни коэффициента пульсации регламентируются актуализированной редакцией СП 52.13330.2011 "Естественное и искусственное освещение. Актуализированная редакция СНиП 23-05-95"  и СанПиН 2.2.1/2.1.1.1278-03. В результате медицинских исследований, учеными установлено, что человеческой глаз воспринимает пульсации частотой до 300 Гц – они воздействуют на мозг, в результате чего происходит подавление природных биоритмов ЦНС, нарушения гормонального фона, другие отклонения в деятельности жизненно важных систем организма.

Измерять пульсацию необходимо у всех осветительных приборов и устройств, оснащенных дисплеями: ноутбуков, планшетов, смартфонов и мобильных телефонов, а так же у настольных и потолочных ламп и прочих источников света. Для измерения коэффициента пульсаций освещённости необходимо:

  • положить люксметр-пульсметр на рабочий или школьный стол, на пол или любую другую поверхность, при этом световой поток должен падать на фотодатчик;
  • если используется многофункциональное устройство, например, RADEX LUPIN, тогда достаточно перейти в режим пульсметра – нажать кнопку «P»;
  • считать результат с дисплея.

Для измерения пульсаций мониторов, экранов, светодиодных и других ламп необходимо:

  • люксметр-пульсметр поднести как можно ближе к объекту измерений при этом фотодатчик должен быть направлен в сторону измеряемого объекта;
  • если используется многофункциональное устройство, например, RADEX LUPIN, тогда достаточно повернуть фотодатчик в сторону объекта измерений и перевести люксметр в режим пульсметра – нажать кнопку «P»;
  • считать результат с дисплея.

На достоверность результатов измерений могут повлиять следующие факторы:

  • наличие дополнительных источников света;
  • перемещение пульсметра при выполнении измерений – прибор должен оставаться неподвижным;
  • прочие помехи – перемещающиеся поблизости предметы и люди, в том числе падающие листья, пролетающие птицы и насекомые и т. д..

Важно! Для точных измерения пульсации люминесцентных, светодиодных и газоразрядных ламп необходимо выждать 5 минут, пока они не выйдут на стабильный режим работы. Намного удобнее работать с пульсметром RADEX LUPIN, так как он оснащен поворотным фотоэлементом.

 

В соответствии с СанПиН 2.2.1/2.1.1.1278-03 предельно допустимое значение пульсаций для мастерских, санузлов и зон ожидания составляет 20 %, для офисов – 15 %, жилых комнат и спален – по 10%, детских, рабочих мест операторов ПК, кабинетов и библиотек – 5 %. Важно помнить, мы не всегда в состоянии увидеть, как мерцает лампа, но превышение допустимого уровня коэффициента пульсации негативно сказывается и на состоянии нервной системы, и на работоспособности, и на настроении.

 

Измерение освещенности

Освещенность – физическая величина, представляющая собой отношение светового потока, падающего на единицу площади, не зависит от направления. Единица измерения – Лк (лм/м2). Измерение освещенности люксметром позволяет проверить условия труда и быта, создать подходящие условий для растений и животных, определить характеристики видеоаппаратуры:

  • люксметр необходимо поместить горизонтально в точке измерения, если необходимо определить освещенность рабочего места – прибор надо положить на стол так, чтобы фотодатчик был направлен к источнику или источникам света;
  • при использовании люксметра RADEX LUPIN, нужно перейти в режим измерения освещенности – нажать кнопку «E»;
  • считать результат с дисплея.

Измеритель освещенности определяет количество света, попадающего на поверхность со всех источников, поэтому если необходимо узнать параметры определенного осветительного прибора, все остальные необходимо выключить.

В соответствии с САНПИН 2.2.1/2.1.1.1278-03 минимальная освещенность парт (столов для хобби), комнат для инженеров - составляет 500 Лк, комнат для групповых занятий дошкольников, поверхности компьютерных столов и в читальных залах – 400 Лк, кабинетов, библиотек и слесарных мастерских – 300 Лк.

Плохая освещенность способствует развитию близорукости и других проблем со зрением, вызывает усталость, негативно сказывается на производительности труда. Особое внимание необходимо уделять освещению учебных мест, так как во время чтения, письма или работе на компьютере при недостатке света глаза сильно перенапрягаются. Для измерения освещенности не надо приглашать профессионалов, достаточно обзавестись люксметром RADEX LUPIN. Стоит не дорого, как обычный бытовой люксметр, зато по точности измерений не уступает профессиональному измерительному оборудованию.

 

Измерение яркости

Яркость – интенсивность излучения света поверхностью источника света, измеряется в кандел на м2. Зависит от отражающей способности покрытия. Так, при одной и той же освещенности яркость может отличаться. Низкая или чрезмерно высокая яркость осветительных устройств и экранов может вызывать дискомфорт. В результате снижается способность к концентрации внимания, падает производительность труда.

В основном измеряют яркость мониторов, экранов и дисплеев. Определить этот параметр у осветительных приборов сложнее – из-за криволинейности поверхности затруднительно получить достоверный результат, кроме того, высокая яркость не гарантирует достаточной освещенности. Измерение этого параметра бытовым яркомером RADEX LUPIN осуществляется накладным способом:

  • перейти в режим измерения яркости – в RADEX LUPIN необходимо нажать кнопку «L»;
  • вывести на экран белый фон;
  • установить фотоэлемент как можно ближе к измеряемому монитору, дисплею или лампе, если осветительный прибор нагревается, держать его на расстоянии 1 см от поверхности;
  • считать результат.

При проведении измерений прибор следует удерживать неподвижно. С целью повышения достоверности результата необходимо определить яркость в нескольких точках лампы или экрана, после чего рассчитать усредненное значение. При работе на ПК рекомендуется, чтобы в поле зрения не находилось источников света, яркостью более 200 кд/м2.

 

Программное обеспечение RadexLight для люксметра RADEX LUPIN

Анализ параметров освещения намного удобнее проводить с помощью бесплатного программного обеспечения RadexLight. Для этого необходимо скачать RadexLight – софт распространяется бесплатно. Программу можно скачать со страницы описания люксметра.

Функции программы:

  • получение информации о световом потоке;
  • построение частотного спектра пульсаций;
  • вывод параметров измерения;
  • определение коэффициента пульсации;
  • отключение фильтра 300 Гц – данная функция предусмотрена только в программе, на приборе она отсутствует.

Информация на монитор выводится в виде графиков, что позволяет получить полное представление об амплитуде, частоте и форме светового потока.

 

Как улучшить качество освещения?

Чаще всего отклонения в работе осветительных приборов вызваны их низким качеством. Высокая пульсация характерна для недорогих люминесцентных ламп с электромагнитной регулировкой пуска. В устройствах с электронными пускорегулирующими аппаратами уровень пульсаций ниже. Лучший способ понизить уровень пульсации – заменить лампы или светильник. Чтобы измерить мерцание светодиодной лампы и проверить качество светодиодных и других ламп, а точнее их характеристик при покупке, можно компактным люксметром RADEX LUPIN, который обеспечивает высокую точность измерений.

Для снижения пульсации дисплеев и экранов придется поэкспериментировать с настройками. Например, повышать яркость до тех пор, пока уровень пульсаций не станет нормальным. Одновременно с этим можно подстроить цветовую палитру таким образом, чтобы при взгляде на экран не возникало дискомфортных ощущений. Для повышения освещенности можно заменить лампы или помимо основного источника света использовать вспомогательные: настольные лампы или бра.

 

Чем измерять параметры ЛАМП

В соответствии с ГОСТ Р 54944-2012 для измерения освещенности необходимо использовать приборы с максимальной погрешностью 10 %. Как правило этому требованию соответствуют дорогостоящие люксметры, стоимость которых настолько высока, что их не приобретают для измерения параметров света в бытовых условиях. Так было до недавнего времени, пока не появился люксметр RADEX LUPIN, с помощью которого можно определить освещенность,  коэффициент пульсации и яркость. Погрешность измерений составляет 10 %.

Люксметр RADEX LUPIN оснащен профессиональным фотодатчиком, который имеет спектральную чувствительность как у человеческого глаза. Путём фильтрации датчиком  УФ и ИК излучений, удается проанализировать только ту часть светового потока, которую воспринимает человеческий глаз. RADEX LUPIN можно использовать для проверки соответствия параметров света, что указаны в СанПиН и других нормативных документах РФ.

www.quarta-rad.ru