Частота обновления экрана - какая лучше? Какую частоту экрана ставить. Как выбрать эффективную толщину экрана в заданном диапазоне частот


Расчет экрана электромагнитного излучения — МегаЛекции

Экранирование – локализация электромагнитной энергии в определенном пространстве с помощью экранирующих или поглощающих материалов.

В зависимости от назначения различают экраны с внутренним возбуждением электромагнитного поля, в которых обычно помещается источник помех, и экраны внешнего электромагнитного поля, во внутренней полости которых помещаются чувствительные к этим полям устройства. В первом случае экран предназначен для локализации поля в некотором объеме, во втором – для защиты от воздействия внешних полей.

Экран, защищая цепи, детали, колебательные контуры от воздействия внешних полей, оказывает существенной влияние на параметры экранируемых элементов. Из-за перераспределения электромагнитного поля внутри экрана происходят изменения их первичных параметров, в результате чего, например, изменяются магнитные связи, уменьшается первичная индуктивность катушек, увеличивается емкость контуров, возрастает активное сопротивление, что ведет к изменению частоты.

Экранирование с использованием вихревых токов обеспечивает одновременное ослабление как магнитных, так и электрических полей. Это дает основание такой способ экранирования называть электромагнитным. Эффективность экранирования такого экрана в ближней зоне (зоне индукции) будет не одинакова для составляющих поля. Поэтому, как правило, для ближней зоны следует вычислять каждый из компонентов поля в отдельности, принимая во внимание при этом, что в дальней зоне (зоне излучения) эффективности экранирования составляющих окажутся одинаковыми.

Физическая сущность электромагнитного экранирования, рассматриваемая с точки зрения теории электромагнитного поля и теории электрических цепей, сводится к тому, что под действием источника электромагнитной энергии на стороне экрана, обращенной к источнику, возникают заряды, а в его стенках – токи, поля которых во внешнем пространстве по интенсивности близки к полю источника, а по направлению противоположны ему и поэтому происходит взаимная компенсация полей. Такое рассмотрение представляется упрощенным, так как природа электромагнитного экранирования гораздо сложнее.

С точки зрения волновых представлений эффект экранирования проявляется из-за многократного отражения электромагнитных волн от поверхности экрана и затухания энергии волн по толщине. Отражение электромагнитной энергии обусловлено несоответствием волновых характеристик диэлектрика, в котором расположен экран и свойств материала экрана. Чем больше это несоответствие, чем больше отличаются волновые сопротивления экрана и диэлектрика, тем интенсивнее частичный эффект экранирования, определяемый отражением электромагнитных волн.

Эффективность электрически замкнутого экрана, т.е. способного ограничивать проникновение силовых линий электрического поля вне и внутри экранируемого пространства, определяется формулой:

 

, (1)

 

где Эотр – ослабление энергии падающих волн за счет отражения на границе сред,

Эпогл – ослабление вследствие затухания энергии в толще экрана,

Эвн.отр – ослабление из-за внутренних отражений в самом экране.

Обычно, если , то , поэтому этой составляющей можно пренебречь, и тогда:

 

, (2)

 

или в децибелах:

, (3)

 

Расчет электромагнитных экранов с достаточной точностью возможен только в некоторых в идеализированных случаях.

 

К ним относятся:

1. Бесконечно плоский экран на пути распространения плоской волны;

2. Размещение точечного источника в центре герметичного идеального проводящего экрана сферической формы;

3. Бесконечно длинный идеально проводящий цилиндр с излучателем в виде бесконечной нити, расположенной на оси этого цилиндра.

Все эти случаи не отражают реальных условий работы экрана, поскольку не учитывают соотношения между длиной волны и линейными размерами экрана, характера источника, неравномерности распределения поля внутри экрана, неоднородности материала и конструкции самого экрана и главным образом возможности проникновения поля через щели и отверстия, имеющиеся в экране.

Однако выше перечисленные случаи позволяют получить многие общие зависимости, например, при падении плоской волны на плоский бесконечный экран. В этом случае величины потерь на отражение и поглощение определяются одинаково, т.к. в толще материала экрана как падающая, так и отраженная волны рассматриваются как плоские.

В металле электромагнитная волна затухает по экспоненциальному закону. Мерой скорости этого процесса является глубина проникновения волны или толщина поверхностного слоя ä. При прохождении волны через толщину поверхностного слоя ä она ослабевает в e раз. Если же толщина материала будет равной ä, она будет ослабевать в ed/äраз. Тогда:

 

, (4)

 

где d – толщина материала экрана, м.

Глубина проникновения представляет собой постоянную величину, характеризующую материал экрана и зависящую от частоты:

 

, (5)

 

где ñ удельное сопротивление материала экрана, ,

ë длина волны в воздушном пространстве, м,

f – частота, МГц,

ìr – относительная магнитная проницаемость материала экрана,

ä толщина поверхностного слоя, м.

На частотах 0,1 - 1 кГц экранирование вихревыми токами действует слабо и магнитное поле можно ослабить только шунтированием его ферромагнитным материалом с большим ì. С повышением частоты увеличивается вытеснение магнитного поля из объема ферромагнитного материала вследствие поверхностного эффекта, уменьшается действующая толщина экрана и эффективность экранирования шунтированием поля падает, а с вытеснением поля растет. В диапазоне частот 0,1 - 1,0 кГц экранирование магнитного поля является труднейшей задачей и к нему прибегают крайне редко.

 

Лабораторное задание

1. Рассчитать эффективность экранирования и глубину проникновения электромагнитного поля в материал экрана ЭМИ с заданными параметрами.

2. Построить частотную зависимость рассчитанных параметров.

3. Сделать вывод об эффективности применяемых мер пассивной защиты.

1. Оформить отчет.

 

 

3.4. Контрольные вопросы

1. В чем смысл Soft Tempest технологий?

2. За счет чего происходит утечка информации через порты ПК?

3. Назначение экрана электромагнитного излучения?

4. Физический смысл глубины проникновения электромагнитного поля в материал экрана?

5. Что такое эффективность экранирования?

 

Приложение

Характеристики некоторых металлов

 

 

 

Металл Удельное сопротивление ì  
 
Медь 0,0175  
Латунь 0,06  
Алюминий 0,03  
Сталь 0,1  
 
Пермаллой 0,65  

 

 

 

ПРАКТИЧЕСКАЯ РАБОТА №6

megalektsii.ru

Эмпив лабы

Федеральное агентство связи

Государственное образовательное учреждение высшего профессионального образования Поволжский государственный университет телекоммуникаций и информатики

Кафедра электродинамики и антенн

МЕТОДИЧЕСКАЯ РАЗРАБОТКА к лабораторному практикуму по курсу

ЭЛЕКТРОМАГНИТНЫЕ ПОЛЯ И ВОЛНЫ

Часть I

Авторы-составители:

доцент, к.т.н. Ружников В.А. ассистент Скачков Д.В.

Самара, 2011

УДК 538.3

Ружников Вадим Александрович, Скачков Дмитрий Владимирович.

Методическая разработка к лабораторному практикуму по курсу «Электромагнитные поля и волны». Часть I. Самара, 2011.

16 стр. с иллюстрациями.

В методической разработке содержатся указания к выполнению лабораторных работ по исследованию скин-эффекта,прямоугольного волновода, проходного объемного резонатора. Лабораторные работы выполняются на компьютерах, в программе, моделирующей работу устройств СВЧ техники.

Рецензент – кафедра «Электродинамики и Антенн» Поволжского государственного университета телекоммуникаций и информатики

СОДЕРЖАНИЕ

 

Лабораторная работа №1. Исследование скин-эффекта. ...............................

4

Лабораторная работа №2. Исследование собственных волн прямоугольно-

го волновода........................................................................................................

6

Лабораторная работа №3. Исследование вынужденных колебаний в объ-

емном резонаторе ...............................................................................................

9

Лабораторная работа №4. Измерение полных сопротивлений...................

11

ПРИЛОЖЕНИЕ ................................................................................................

13

3

ЛАБОРАТОРНАЯ РАБОТА №1. «ИССЛЕДОВАНИЕ СКИН-ЭФФЕКТА»

1.1. Цель работы

Исследование закономерностей распространения электромагнитных волн в проводящих средах, а также скин-эффектав проводнике конечных размеров.

1.2.Литература

1.Пименов Ю.В., Вольман В.И., Муравцов А.Д. «Техническая электродинамика» – М.: «Радио и связь», 2000. – 536 с.

2.Семенов Н.А., «Техническая электродинамика» – М.: «Связь», 1973. – 480 с.

1.3.Оборудование

Работа выполняется с использованием имитационной модели металлической пластины, находящейся в переменном электромагнитном поле. Толщина пластины фиксирована и составляет D = 20мм. Рабочая частотаf = 1 кГц.

1.4.Порядок выполнения работы

1.Выбрать, в качестве материала пластины, медь.

2.Перемещая виртуальный зонд вдоль пластины определить максимальное значение напряженности электрического поля (Emax).

3.Перемещая виртуальный зонд вдоль пластины измерить зависимость напряженности поля от координат зонда (расстояние, пройденное волной в материале). Записать полученные результаты в таблицу 1.1.

Таблица 1.1.

х, мм

0,1

0,5

1

2

3

4

5

6

7

8

9

10

Медь

E, мВ/м

 

 

 

 

 

 

 

 

 

 

 

 

E/Emax

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Олово

E, мВ/м

 

 

 

 

 

 

 

 

 

 

 

 

E/Emax

 

 

 

 

 

 

 

 

 

 

 

 

Латунь

E, мВ/м

 

 

 

 

 

 

 

 

 

 

 

 

E/Emax

 

 

 

 

 

 

 

 

 

 

 

 

х, мм

0,1

0,2

0,3

0,6

0,9

1,2

1,5

1,8

2,1

2,4

2,7

3

Сталь

E, мВ/м

 

 

 

 

 

 

 

 

 

 

 

 

E/Emax

 

 

 

 

 

 

 

 

 

 

 

 

4. Повторить п.п.2 и п.п.3 для других материалов (олово, латунь, сталь). Обратите внимание, что координата зонда x для стали изменяется в пределах от 0,1 до 3мм.

4

5.По полученным данным построить нормированные графики амплитуд напряженностей электрического поля (E/Emax) в пластинах от расстояния, пройденного волной в материале (x).

6.По графикам определить глубину проникновения поля в материал (толщину скин-слоя),рассчитать удельную проводимость материала для каждой пластины. Методика определения глубины проникновения поля в материал графическим методом описана в приложении.

Примечание: формулу для расчета проводимости можно найти в [1], Глава 6 – « Плоские волны».

1.5.Содержание отчета

1.Название и цель работы.

2.Таблица результатов экспериментов.

3.Нормированные графики амплитуд напряженностей электрического поля E(x) с определением глубины проникновения поля в материал (толщиныскин-слоя)для каждого из материалов.

4.Результаты расчета удельной проводимости материалов.

5.Выводы по проделанной работе.

1.6.Контрольные вопросы

1.Поле внутри проводника конечных размеров как суперпозиция прошедших волн (на примере пластины конечной толщины).

2.Условия, при которых в проводнике конечных размеров наблюдается скин-эффект?

3.Что называют глубиной проникновения поля в материал (толщиной скин-слоя)?

4.Как определяется глубина проникновения поля в материал (графически и аналитически)?

5.Приближенные граничные условия Щукина-Леонтовичаи границы их применимости.

6.Физическая сущность электромагнитного экранирования.

7.Какие параметры экрана определяют эффективность экранирова-

ния?

8.Как выбрать эффективную толщину экрана в заданном диапазоне частот?

ЛАБОРАТОРНАЯ РАБОТА №2. «ИССЛЕДОВАНИЕ СОБСТВЕННЫХ ВОЛН ПРЯМОУГОЛЬНОГО ВОЛНОВОДА»

2.1. Цель работы

Исследование частотной зависимости коэффициента затухания волны основного типа в прямоугольном волноводе в режиме отсечки (запредельный волновод). Исследование частотной зависимости длины волны основного типа в прямоугольном волноводе.

2.2.Литература

1.Пименов Ю.В., Вольман В.И., Муравцов А.Д. «Техническая электродинамика» – М.: «Радио и связь», 2000. – 536 с.

2.Лебедев И.В. «Техника и приборы СВЧ», T.1 - М.: «Высшая шко-

ла», 1970 г. – 439 с.

2.3.Оборудование

Лабораторная работа выполняется на ЭВМ, в программе, моделирующей работу участка прямоугольного волновода. В работе используются виртуальные: генератор, участок прямоугольного волновода, измерительный зонд, миллиамперметр.

2.4.Порядок выполнения работы

1.Установить частоту генератора f = 5 ГГц, перемещая зонд вдоль

измерительной линии, снять зависимость напряженности электрического поля от пройденного по волноводу пути x =x0 −xз (x0 – координата, со-

ответствующая началу волновода 40 мм, xз – координата измерительного зонда). Измерения следует производить до тех пор, пока напряженность поля не уменьшится в 10 раз от максимального значения. Записать значения в таблицу 2.1

2. Повторить измерения п.1. для частот f = 5,5; 6; 6,5 ГГц, записывая значения для каждой из частот в таблицу 2.1

Таблица 2.1.

xз, мм

x, мм

I, мкА

E≈ I

3.Построить зависимость напряженности электрического поля Е(x) оп пути, пройденного волной вдоль волновода в режиме отсечки на каждой из частот п.п.1. и п.п.2.

6

4. По полученным распределениям амплитуды электрического поля Е0 на каждой частоте определить графически коэффициент затухания αЭ ( f ) и построить его зависимость от частоты.

Примечание: в версии программы ниже v.2.2, разработчиком программы допущена ошибка, вследствие которой экспериментально полученные величины коэффициента затухания в 10 раз больше, чем должны быть. Учитывайте это при расчетах, полученные экспериментально значения коэффициента затухания нужно уменьшить в 10 раз.

5. Для каждой из частот аналитически рассчитать коэффициент затухания для волны основного типа в запредельном волноводе и построить частотную зависимость α А ( f ) на том же графике, что и экспериментальную. Размеры волновода23× 10 мм

Примечание: формулу для расчета коэффициент затухания в запредельном волноводе рекомендуется взять из [2], Глава 5 – « Передача энергии по волноводам».

6. На частотах, указанных в таблице 2.2 измерить длину волны основного типа в прямоугольном волноводе. Методика определения длины волны в волноводе графическим методом описана в приложении. Записать значения для каждой частоты в таблицу 2.2.

 

 

 

 

 

 

 

 

Таблица 2.2.

f, ГГц

9,0

9,5

10,0

10,5

11,0

11,5

12,0

12,5

13,0

x1, мм

 

 

 

 

 

 

 

 

 

x2, мм

 

 

 

 

 

 

 

 

 

ΛЭ (f )

 

 

 

 

 

 

 

 

 

7.По экспериментальным результатам построить зависимость длины волны в волноводе от частоты ΛЭ ( f ).

8.Для каждой из экспериментальных частот аналитически рассчитать длину волны h20 и построить частотную зависимость ΛА( f ) на том же

графике, что и экспериментальную. Размеры волновода 23× 10 мм.

Примечание: формулу для расчета длины волны в прямоугольном волноводе можно найти в [2], Глава 2 – « Общие вопросы передающих линий СВЧ» или в [1], Глава 10 – « Направляющие системы».

2.5.Содержание отчета

1.Название и цель работы.

2.Краткое описание и схема каждого из экспериментов.

3.Таблицы результатов каждого из экспериментов.

4.Графики распределения амплитуды поля в запредельном волноводе с построениями, необходимыми для расчета коэффициента затухания волны.

5.Расчет коэффициентов затухания волны в запредельном режиме.

6.Графики теоретической и экспериментальной зависимостей коэффициента затухания от частоты.

7.Графики теоретической и экспериментальной зависимостей длины волны в волноводе от частоты.

8.Выводы по проделанной работе.

2.6.Контрольные вопросы

1.Прямоугольный волновод и его особенности.

2.Собственные волны прямоугольного волновода и их классифика-

ция.

3.Структуры полей электрических и магнитных волн в прямоугольном волноводе.

4.Постоянная распространения, поперечное волновое число и фазовая скорость собственных волн прямоугольного волновода.

5.Критическая частота для разных типов волн.

6.Коэффициент затухания в прямоугольном волноводе.

7.Длина волны, фазовая и групповая скорости собственных волн прямоугольного волновода и их зависимость от частоты.

8.Что называется запредельным волноводом? Структура электромагнитного поля в запредельном волноводе.

ЛАБОРАТОРНАЯ РАБОТА №3 «ИССЛЕДОВАНИЕ ВЫНУЖДЕННЫХ КОЛЕБАНИЙ В ОБЪЕМНОМ РЕЗОНАТОРЕ»

3.1. Цель работы

Исследование методик экспериментального определение нагруженной добротности объемного резонатора.

3.2.Литература

1.Пименов Ю.В., Вольман В.И., Муравцов А.Д. «Техническая электродинамика» – М.: «Радио и связь», 2000. – 536 с.

2.Лебедев И.В. «Техника и приборы СВЧ», T.1 - М.: «Высшая шко-

ла», 1970 г. – 439 с.

3.3.Оборудование

Лабораторная работа выполняется на ЭВМ, в программе, моделирующей работу проходного объемного резонатора: В работе используются виртуальные: генератор, проходной прямоугольный резонатор, измерительный зонд, миллиамперметр.

3.4.Порядок выполнения работы

1.Установить на резонаторе высокую добротность, изменяя частоту генератора, определить резонансную частоту f0 одноволнового режима по максимуму показаний микроамперметра.

2.Изменяя частоту с шагом 0,005 ГГц (4 шага в каждую сторону от резонансной частоты), снять зависимость мощности на выходе резонатора от частоты. Записать результаты измерения в таблицу 3.1.

Таблица 3.1.

P ≈ I2

P/Pmax

10lg(P/Pmax)

3.Повторить п.п.1 и п.п.2 для других добротностей (средней, низкой).

4.Для всех добротностей построить графики зависимости мощности на выходе резонатора от частоты. Учитывая специфику измеренных величин, графики удобнее строить в логарифмическом масштабе.

5.По полученным графикам определить частоты расстроек по половинной мощности для каждой добротности и рассчитать нагруженные добротности резонатора.

9

Примечание: формулу для расчета нагруженной добротности проходного резонатора можно найти в [1], Глава 11 – « Объемные резонаторы».

3.5.Содержание отчета

1.Название и цель работы.

2.Краткое описание и схема эксперимента.

3.Таблица результатов эксперимента.

4.Графики зависимости мощности на выходе резонатора от частоты с необходимыми построениями для расчетов нагруженной добротности.

5.Расчеты нагруженных добротностей резонатора.

6.Выводы по проделанной работе.

3.6.Контрольные вопросы

1.Понятие объемного резонатора. Общие свойства резонаторов.

2.Понятие проходного резонатора.

3.Условия существования колебаний в проходном прямоугольном резонаторе.

4.Собственные колебания объемного резонатора и их связь с собственными волнами линии передачи. Типы колебаний. Основной тип колебаний.

5.Потери в резонаторе. Виды потерь и добротность резонатора

6.Проходной прямоугольный резонатор. Типы собственных колебаний, собственные частоты прямоугольного резонатора. Вырожденные колебания.

7.Классификация типов колебаний проходного прямоугольного резонатора. Основной тип колебаний.

8.Нагруженная добротность резонатора и метод ее экспериментального определения.

studfiles.net

Настройка частоты обновления экрана монитора при воспроизведении видео, ручная и автоматическая | IThabits.Ru

Главная > Мультимедиа > Секреты качественного воспроизведения видео на компьютере. Часть 2: Настройка частоты обновления экрана монитора

Здравствуйте уважаемые читатели блога www.ithabits.ru. Сегодня мы продолжим разбираться с компьютерным видео.

В первой, фактически вводной, части мы отметили, что воспроизведение некоторых видеофайлов на компьютере сопровождается подергиванием, подтормаживанием, а в некоторых случаях даже сдвигом по горизонтали одной части кадра относительно другой (обычно на панорамных сценах).

Одним словом, воспроизведение не всегда является плавным, а иногда его и вовсе нельзя признать удовлетворительным.

Мы определили три возможные основные причины:

  • Недостаточная производительность компьютера или его графической подсистемы;
  • Несоответствие частоты обновления экрана частоте кадров воспроизводимого на компьютере видео;
  • Неправильный порядок чередования полей интерлейсного видео.

О том, как определить и при необходимости минимизировать загрузку графического процессора (GPU) или центрального процессора (CPU) при воспроизведении того или иного видеофайла, мы поговорим чуть позже.

Нарушение порядка полей интерлейсного видео встречается на практике не так уж и часто, да и как с этим бороться в целом понятно.

Временные характеристики — именно эта причина неплавного воспроизведения видео является наиболее коварной и вызывает наибольшие проблемы.

Причем заметьте, она совершенно не связана с быстродействием компьютера. Можно купить самый быстрый на сегодняшний день компьютер и неожиданно получить на нем некрасивое, раздражающее при просмотре видео.

Весь последующий материал будет в основном посвящен способам приведения в соответствие частот кадров воспроизводимого видео и обновления экрана (refresh) устройств вывода изображения (монитор, телевизор, проектор и т.д.).

24 кадра на экране телевизора

Еще одна небольшая справка по стандартам частоты кадров. Это интересно.

Кадровая частота, английские названия — Frames per Second (FPS), Frame frequency, Frame rate.

  • 24 кадра в секунду — является общемировым стандартом в киноиндустрии. Был принят в 1932 году Американской Академией Киноискусства.

Такая частота кадров была выбрана в то время как компромисс между плавностью воспроизводимого видео, расходом кинопленки и ее долговечностью — износ пленки сильно зависит от скорости ее прокрутки.

Все последующие попытки изменить эту частоту на более высокую с целью достижения большей плавности движения на экране до сих пор успехом не увенчались. Сегодня можно найти лишь отдельные упоминания об этом. Так, на 2016 год запланирован выход фильма “Аватар 2”, который обещают снять с кадровой частотой заметно превышающей стандартную.

Очевидно увеличения частоты кадров в киноиндустрии стоит ожидать только после полного перехода на цифровой формат записи и соответствующее ему демонстрационное оборудование в кинотеатрах.

  • 50 полукадров (25 кадров) в секунду – частота европейского телевизионного стандарта PAL/SECAM. Соответствует частоте электросети в соответствующих странах.

Демонстрация стандартных 24-кадровых фильмов в системах PAL/SECAM не вызывает больших затруднений. В процессе, который носит название телекинопроекция, фильм воспроизводится со скоростью на 4% выше исходной, то есть с частотой ровно 25 кадров в секунду.

Нетрудно подсчитать, что при этом демонстрация полуторачасового фильма займет примерно на 3,5 минуты меньше. Визуально заметить такое изменение скорости практически невозможно.

Чуть заметнее как раз изменение тональности звукового сопровождения. Однако, существующие сегодня методы цифровой обработки позволяют успешно решать эту проблему.

Оба поля чересстрочного телевизионного сигнала передают в этом случае один и тот же кадр фильма.

Таким же образом был реализован вывод прогрессивного видео в бытовых видеокамерах, например в упоминавшейся ранее HDV камере Canon HV20. Разница заключается лишь в том, что видео сразу же записывается в камере со скоростью 25 кадров в секунду.

Именно к такому просмотру фильмов на телевизоре все мы привыкли с детства.

Уверен, что также, как до недавнего времени и я, большинство об этой “хитрости” даже и не подозревали.

  • 59,94 полукадров (29,97 кадров) в секунду – частота американского телевизионного стандарта NTSC (National Television Standards Committee).

29,97 – округленное значение, точное 29.97002616 (или 30000/1001).

Первый, причем совершенно естественный вопрос, почему такое странное значение частоты.

Изначально, для черно-белого вещания в стандарте NTSC была выбрана полукадровая частота 60 Гц. Как и в PAL она являлась равной частоте электрической сети.

Однако, при переходе на формат цветного телевещания оказалось, что при такой частоте возникали биения между поднесущими цвета (3,58 МГц) и звука (4,5 МГц). Они создавали хорошо заметную помеху в виде перемещавшихся по экрану полос.

Для того, чтобы избежать этого неприятного явления, частоты были изменены так, что поднесущая звука стала точно равна 286-й гармонике частоты строк. Полосы не исчезли, но стали неподвижными и оттого малозаметными.

С демонстрацией фильмов в системе NTSC все совсем не так гладко, как в системе PAL/SECAM. Совершенно понятно, что просто увеличить скорость прокрутки фильма с 24 кадров в секунду до 29,97 невозможно. Вернее, увеличить то можно, но смотреть без смеха будет нельзя.

Для решения этой непростой задачи была придумана телекинопроекция, получившая название преобразование 3:2 (3:2 Pulldown).

Суть интерполяции заключается в том, что первый кадр фильма предается двумя полями чересстрочного телевизионного сигнала, а к каждому второму кадру добавляется еще одно третье поле (повтор). Отсюда и название 3:2, или 2:3 (в первом удваивание полей происходит в нечётных кадрах).

Четырем кадрам исходного видеофильма соответствует ровно 10 полей чересстрочного видеосигнала или 5 кадров.

В процессе телекинопроекции, для того, чтобы получились целые значения, частота кадров исходного фильма снижается с 24 до 23,976 Fps, что составляет разницу всего на 0,1% и совершенно незаметно для зрителя.

Через каждые 4 кадра цикл повторяется.

Нетрудно видеть, что такое преобразование отнюдь не идеально с точки зрения плавности воспроизведения, но оно является фактически единственно возможным, если не делать компьютерную интерполяцию промежуточных кадров (о ней то мы как раз и будем говорить в следующей части статьи).

Стандартная частота обновления современных LCD мониторов составляет 60 Гц. Очевидно, что описанный выше метод 3:2 Pulldown может быть с определенным успехом использован и для вывода 24-кадровых фильмов на такие устройства с прогрессивной разверткой.

Тем не менее, идеальным вариантом для просмотра фильмов является такой, при котором частота обновления экрана равна или кратна частоте кадров воспроизводимого фильма.

Этим мы наконец и займемся.

Настройка частоты обновления экрана монитора

В этой части статьи мы рассмотрим возможные варианты настройкой частоты обновления монитора.

Данный способ достижения плавного воспроизведения видео на компьютере чрезвычайно прост, является, можно сказать, наиболее честным и абсолютно не требует никаких дополнительных вычислительных ресурсов.

Главным и в некоторых случаях его убийственным недостатком является то, что он полностью зависит от характеристик устройства вывода.

Усредненно можно сказать, что этот вариант улучшения качества воспроизведения видео будет полностью работоспособен в случае, когда для просмотра используется подключенный к компьютеру (настольному или мобильному) внешний LCD телевизор или проектор, частично применим для настольного компьютера с LCD монитором и, к сожалению, совершенно непригоден для большинства ноутбуков при выводе изображения на свой экран.

Ручная настройка частоты обновления экрана

  • Настройка экрана в панели управления Windows

В Windows открыть настройки разрешения экрана и частот его обновления можно через “Панель управления” –> “Экран” –> “Настройка разрешения экрана” –> “Дополнительные параметры” –> “Монитор”.

Существенно сократить путь можно щелкнув правой кнопкой мыши непосредственно на рабочем столе и выбрав в появившемся окне “Разрешение экрана”.

На представленном скриншоте можно видеть идеальный во всех отношениях вариант набора частот. Такую картину дает мой большой LCD телевизор Sony, подключенный к компьютеру по HDMI через ресивер Pioneer.

В данном случае ресивер нужен для вывода звука и никакой лепты в видеосигнал не вносит пропуская его через себя напрямую. Очень удобно, что видеокарты научились выводить не только видео, но и звук – оба потока идут по одному кабелю.

Естественно такой набор частот исключительно заслуга телевизора и он перекрывает все реальные варианты кадровых частот видеофильмов.

Если открыть список доступных кадровых частот не для телевизора, а для монитора, то в нем окажется лишь два значения – 50 Гц и 60 Гц. То есть, с идеально плавным просмотром фильмов 24 / 23,976 Fps на экране монитора в моем случае можно распрощаться. Однако это не значит, что нет мониторов с поддержкой 24р. Возможно у вас как раз такой.

Может быть кто-то еще помнит, что инициатором данной публикации стала видеокамера Canon Legria HF, работающая в стандарте PAL. Так вот, могу сразу сказать, что переключение частоты разверток монитора и телевизора на 50 Гц мгновенно решило все вопросы с просмотром записанного с ее помощью видео –  воспроизведение стало идеально гладким.

А вот так может выглядеть список режимов кадровой развертки дисплея ноутбука. 60 Гц является единственно возможным значением и регулировать получается нечего.

Именно это я имел в виду, когда говорил об ограниченной применимости данного способа.

Тем не менее, сильно расстраиваться по этому поводу все же не стоит. Сегодня существуют способы заметно улучшить качество воспроизведения фильмов и без изменения кадровой частоты монитора. О них мы будем говорить в следующей части статьи. Очень хорошие результаты можно получить для фильмов с частотой кадров 24 / 23,976 Fps. А вот для видео стандарта PAL в этом случае все обстоит не столь оптимистично.

  • Еще один естественный вопрос – откуда операционная система узнает о том, какие режимы поддерживает то или иное устройство вывода изображения.

Практически все современные устройства, подключаемые к компьютеру, имеют свойство PnP (Plug and Play).

Данная технология предназначена для быстрой установки устройства. При подключении устройства к компьютеру оно передает ему свой уникальный идентификационный номер, однозначно определяющий производителя, модель, номер версии и т.д.

Получив такой номер операционная система автоматически подбирает имеющийся у нее подходящий драйвер или загружает его через Интернет.

Подавляющее большинство компьютерных мониторов, к которым относятся дисплеи, телевизоры, проекторы и другие устройства вывода, также являются устройствами PnP. Но помимо уникального идентификатора они дополнительно передают операционной системе исчерпывающую информацию о своих характеристиках, таких как: название, размер, допустимые частоты строчной и кадровой разверток, цветовые характеристики, серийный номер и пр.

Все эти данные записаны в ПЗУ самого устройства в стандарте EDID (Extended Display Identification Data) и считываются при необходимости по каналу DDC (Display Data Channel – канал экранных данных) через графический адаптер.

  • Панель управления NVIDIA

Панель управления NVIDIA можно запустить из контекстного меню по правому клику на рабочем столе или из трея.

Выбираем на левой панели “Дисплей / Изменение разрешения”.

На правой панели выбираем нужный для регулировки дисплей (если он не один).

На рисунке за Pioneer Electronics прячется телевизор Sony. Чуть меньший набор кадровых частот в выпадающем списке “Частота обновления” по сравнению с представленным выше обусловлен тем, что интерлейсный режим 1080i является здесь самостоятельным.

  • AMD Catalyst Control Center

Для изменения разрешения и частоты обновления дисплея в меню на левой части окна AMD Catalyst Control Center нужно выбрать “Поддержка HDTV (Цифровая плоская панель)”.

Правая часть окна AMD CCC требует некоторых пояснений — большое количество текста и верхняя таблица режимов определенно могут вызвать замешательство у впервые попавшего сюда пользователя.

На самом деле, для того, чтобы изменить разрешение монитора или частоту его обновления, нужный режим необходимо выбирать в нижнем списке. Именно в нем содержится информация, полученная на основе обработки данных из EDID соответствующего дисплея.

Верхняя таблица позволяет добавить режимы, которые отсутствуют в EDID выбранного дисплея. Однако нужно четко представлять, что добавление нового режима вовсе не означает, что дисплей непременно заработает с заданными параметрами. Скорее всего как раз не заработает.

Я попытался добавить 1080р24 в список режимов моего монитора Samsung. Разумеется ничего хорошего из этого не вышло – вместо 24р монитор переключался в 50р.

Так что если веской причины экспериментировать с нестандартными режимами работы монитора нет, то лучше оставить все как есть, то есть в соответствии с информацией, полученной из EDID.

При настройке вывода на картах AMD скорее всего придется по одному разу для каждого режима зайти в “Настройки масштабирования” и передвинуть движок “Сжатая настройка” на ноль.

Не очень понимаю с какой целью это сделано, но по-умолчанию включается сжатая развертка. Очевидно для того, чтобы абсолютно на любых мониторах при первом включении полностью отображалась вся картинка рабочего стола.

Как узнать параметры воспроизводимого видео

Перед тем как целенаправленно менять частоту обновления дисплея с целью получения плавного воспроизведения того или иного видеоконтента, нужно знать точную частоту кадров последнего.

Наверное самый простой вариант, это использовать для этой цели проводник Windows (Explorer). После выделения мышью выбранного файла нужно открыть “Свойства” через меню окна проводника или из контекстного меню по правому клику на файле.

Как можно видеть из представленного рисунка, в операционной системе принято оперировать целочисленными значениями частоты кадров. Поэтому точное значение (для данного файла это 23,976 Fps) определить не удастся. Но не это главное.

Узнать с помощью проводника Windows «подробные» параметры можно только для тех файлов, в которых видео сохранено в известном системе контейнере, например avi. А вот для матрешки (mkv), ничего выяснить не получится (в Windows 10 уже получится).

Для решения этой задачи можно использовать специальные приложения, такие как VideoInspector. Но не торопитесь их скачивать и устанавливать.

Для определения параметров воспроизводимого видео можно с большим успехом использовать уже неоднократно упоминавшийся в первой статье медиаплеер Media Player Classic Home Cinema (MPC-HC), который можно скачать отсюда.

Достаточно запустить в нем на воспроизведение интересующий видеофайл и открыть окно “Свойства” через меню “Файл”, или из контекстного меню по правому клику мышью на окне плеера, или по комбинации клавиш “Shift + F10”. Кому как удобнее. Воспроизведение фильма можно при этом остановить.

На вкладке “Подробно” окна “Свойства”, которая открывается по-умолчанию, представлена вся интересующая нас информация о медиафайле.

Если ее недостаточно, можно перейти на вкладку “MediaInfo” и получить более подробные сведения о всех записанных в файле потоках и даже сохранить эту информацию в текстовом файле.

32-разрядная версия MPC-HC занимает на диске около 35 Мбайт, 64-разрядная около 50-ти. Думаю, что сегодня такие объемы никого не остановят.

! Мой совет владельцам компьютеров с 64-разрядными системами не торопиться с установкой соответствующей версии MPC-HC. Дело в том, что некоторые расширенные возможности этого медиаплеера, о которых мы будем говорить ниже, доступны сегодня только для 32-разрядной версии.

Автоматическая настройка кадровой частоты дисплея

Описанные выше ручные способы настройки дисплея хороши в том случае, когда кадровую частоту приходится изменять не так часто. Например, если вы планируете продолжительное время работать с видеоконтентом, записанным в системе PAL, то можно смело установить 50 Гц как основную частоту обновления монитора.

На практике такое случается далеко не всегда. Чаще приходится воспроизводить видео, записанное в различных форматах. Естественно, каждый раз вручную регулировать refresh не слишком удобно.

Нельзя ли автоматизировать этот процесс? Оказывается можно. И даже нужно.

  • Переключение режима монитора в Media Player Classic Home Cinema

Запускаем MPC-HC (в данном случае его разрядность 32 или 64 значения не имеет) и открываем в меню “Вид –> Настройки” или просто нажимаем на клавиатуре “O”.

Настраиваем таблицу режимов примерно так, как показано на рисунке. Естественно, будут доступны только те режимы, которые поддерживает ваш дисплей в соответствии с информацией из EDID.

После завершения настройки таблицы отмечаем “Переключать режим монитора в полноэкранном режиме”, сохраняем и перезапускаем медиаплеер.

Теперь всякий раз при переходе в полноэкранный режим при воспроизведении фильма плеер будет автоматически переключать частоту обновления дисплея в соответствии с параметрами видео.

Если вам посчастливилось и ваш монитор имеет набор частот, аналогичный представленному в таблице, то можно считать, что задача плавного воспроизведения любого видео полностью решена (разумеется, если нет проблем с быстродействием компьютера).

  • Как правильно оценить качество воспроизведения видео

После того, как частота обновления монитора настроена желаемым образом, самое время объективно оценить полученный результат.

Для более-менее объективной визуальной оценки плавности показа видеоконтента, в нем стоит поискать сцену, на которой есть не очень быстро и равномерно перемещающийся объект. Хорошо подходит, например движущийся автомобиль.

Однако найти такую подходящую для оценки сцену бывает не всегда просто.

Если использовать для просмотра видео MPC-HC, то задачу можно сильно упростить. В состав данного медиаплеера включены два весьма полезных инструмента.

Один из них, очень простой и эффективный, называется “Тест дрожания”. Вызывается он из меню “Вид –> Настройки рендеринга –> Тест дрожания” или по комбинации клавиш “Ctrl + T”. В результате на экране появятся две вертикальные линии, перемещающиеся слева направо.

Если воспроизведение настроено правильно, перемещение линий будет абсолютно плавным. Если имеет место их подергивание, значит что-то получилось не так. Помимо плавного движения линии должны быть абсолютно прямыми и не иметь разрывов и смещений по высоте.

Второй показывает статистику воспроизведения видеоконтента. Вызывается он из меню “Вид –> Настройки рендеринга –> Показать статистику” или по комбинации клавиш “Ctrl + J”.

Из представленного рисунка видно, что помимо интересующих нас сегодня в первую очередь частот кадров видео (Frame rate) и обновления монитора (Refresh rate), выводится большое количество других параметров, характеризующих процесс рендеринга.

На графике в нижней правой части экрана визуализируются параметры, отражающие плавность воспроизведения. В идеале обе линии должны быть абсолютно ровными. Периодические и внезапные отклонения этих графиков вверх или вниз от горизонтальной оси говорят о неплавном воспроизведении.

  • Переключение режима монитора с помощью рендера madVR

Режим монитора можно переключать не только при переходе на полный экран, но и в оконном режиме в момент начала воспроизведения фильма. Это может оказаться ценным, например в случае, когда есть желание комфортно просматривать некий видеоконтент в окне и заниматься параллельно на компьютере чем-либо еще.

Для того, чтобы иметь такую возможность, необходимо дополнительно установить расширенный рендер madVR.

MadVR — самостоятельное приложение, написанное Матиасом Рауэном (Mathias Rauen). Его целью является улучшение качества обработки и визуализации видео за счет точного преобразования цветового пространства и качественного масштабирования изображения с использованием возможностей процессора видеоадаптера (GPU).

Сегодня существует только его 32-разрядная версия. Соответственно, медиаплееры, в которые включена поддержка madVR, также должны быть 32-разрядными. Именно поэтому я рекомендовал выше установить именно такую версию MPC-HC.

Скачать madVR можно отсюда.

После распаковки архива в любую постоянно доступную системе папку, нужно найти в ней и запустить с правами администратора файл install.bat.

Более подробно о настройках madVR мы поговорим в следующий раз. Сегодня ограничимся только той частью, которая отвечает за регулировку частоты кадровой развертки дисплея.

После того, как вы выполните install.bat, в меню программ Windows ничего нового не появиться. Хитрость заключается в том, что до конфигурации madVR можно добраться исключительно в процессе воспроизведения видеофайла с использованием данного рендера.

Открываем настройки MPC-HC и выбираем в качестве видео рендера madVR.

Запускаем на воспроизведение в MPC-HC любой видеофайл и ищем в трее значок madVR — .

Кликаем на значок любой кнопкой мыши и находим в появившемся окне “Edit madVR settings”.

Единственное, что нужно сделать, это прописать с поле “list all display modes …” режимы, реально поддерживаемые вашим монитором (вопрос о том, как их узнать, мы уже обсудили выше).

Далее выбираем, в какой момент мы хотим переключать режим работы дисплея. Так как мы хотим переключать его в момент начала воспроизведения видеоконтента, отмечаем “…when playback starts”.

В следующей секции выбираем в какой момент нужно восстанавливать исходную частоту обновления монитора (можно и не восстанавливать).

Ниже в данном окне представлены примеры правильного написания режимов и пояснение, что частота кадров 23,976 в секунду обозначается как “23”.

После сохранения сделанных настроек перезапускаем воспроизведение видео и наслаждаемся полученным результатом. Если все было сделано правильно, видео теперь будет воспроизводиться плавно не только в полноэкранном режиме, но и в оконном.

Необходимо иметь в виду, что в момент переключения частоты развертки изображение на экране будет на непродолжительное время пропадать. Это совершенно нормально.

В следующий раз мы начнем говорить об изменении частоты кадров исходного видео. Не пропустите самое интересное.

Опубликовано  -  3 декабря, 2014  в рубрике  -  Мультимедиа  Теги: madVR, Microsoft, mpc-hc, Video

www.ithabits.ru

Частота обновления экрана - какая лучше? Какую частоту экрана ставить

В числе ключевых технических характеристик компьютерных дисплеев и телевизионных мониторов - частота обновления. В каких случаях данный параметр допускается? Когда желательно корректировать вручную? В каких ситуациях данного рода процедура не имеет целесообразности?

Что такое частота экрана?

Монитор компьютера или экран телевизора работает по принципу последовательности кадров. То есть примерно так, как кинопроектор. Частота кадров при воспроизводстве фильма - порядка 25-30. В случае с монитором ПК или экраном телевизора данный показатель должен быть выше, так как выстраиваемая картинка гораздо сложнее, чем видеоряд на пленке. Общее правило - чем больше показатель частоты, тем четче изображение и тем приятнее смотреть на экран.

Частота и тип экрана

Есть несколько технологических типов реализации экранов и мониторов. Самые современные - это ЖК, LCD и LED. Относительно устаревшими считаются CRT. Частота обновления экрана ЖК-телевизора или монитора (по аналогичной технологии) при этом определяется с учетом иных принципов, чем в случае с приборами, в которых установлены электронно-лучевые проекторы. В случае с ЖК-дисплеем картинка прорисовывается на всем пространстве экрана сразу.

Если речь идет о CRT-дисплеях - построчно. Поэтому, если частота обновления экрана ЖК-телевизора и электронно-лучевого агрегата одинакова, то качество с высокой вероятностью будет отличаться в пользу устройства первого типа. Более того, если соответствующий показатель составляет порядка 60 ГЦ (количество обновлений дисплея в секунду), то в случае с CRT-мониторами будет очень заметным мерцание.

Настройка частоты для CRT-дисплеев

Поэтому мы уделим настройке электронно-лучевых дисплеев особое внимание. Как изменить частоту обновления экрана CRT-типа в Windows на примере версии XP? Очень просто. Необходимо войти в "Панель управления". Затем выбираем "Экран". Открыв соответствующее окно, необходимо найти закладку "Параметры". Далее - "Дополнительно". Там, скорее всего, будет список из нескольких вариантов.

Какую частоту обновления экрана ставить? Для CRT-мониторов рекомендуемое значение - 85 ГЦ. Если данной цифры нет в списке, то это, скорее всего, связано с тем, что на ПК не установлен заводской драйвер видеокарты. Его необходимо скачать в Интернете или же поискать на дисках, которые прилагались к ПК при продаже. Можно также попробовать обратиться в сервисный центр с просьбой помочь с драйвером.

CRT-дисплеи: нюансы

Отметим, что практически во всех операционных системах есть возможность изменить такой параметр, как частота обновления экрана. Windows 7 как самая современная и, казалось бы, не требующая существенного вмешательства в настройки со стороны пользователя, не исключение. В этой версии ОС алгоритм настройки нужных параметров практически тот же. Через "Панель управления" устанавливается нужная частота обновления экрана. Какая лучше операционная система адаптирована к выставлению соответствующих настроек? Практически все версии Windows справляются с задачей одинаково. Правда, что касается самых свежих версий ОС (той же Windows 7), в них могут быть некоторые сложности с драйверами для устаревших устройств. Но они решаемы - как правило, любое ПО соответствующего типа можно найти в Интернете.

Также при работе в Windows 7 алгоритм выхода на нужные настройки несколько отличается от сценария в XP. Нужно войти в "Панель управления", затем нажать на "Экран", после - выбираем изменение его параметров. Затем - "Дополнительные настройки". Далее переходим на вкладку "Монитор", где находим настройки частоты.

Отметим также - при выставлении в Windows всех версий соответствующих параметров не следует снимать галочку около пункта "Скрыть режимы, которые монитор не использует". Дело в том, что технологически экран, конечно, способен работать с настройками вне рекомендованных. Но на практике это может создать проблемы со стабильностью работы ПК. Поэтому, если пользователь задается вопросом, как поменять частоту обновления экрана, если нужного параметра нет, а доступные значения ниже, чем желательные для CRT-экранов, первое, что мы ему порекомендуем - установить самые свежие драйверы на видеокарту.

Фактор разрешения

В некоторых случаях качество изображения на CRT-дисплее зависит от разрешения. При более высоких его значениях на экране помещается попросту больше элементов. А в случае, например, с фотографиями или видео, есть возможность просматривать их более детально. Оптимальные параметры разрешения зависят, прежде всего, от величины экрана в дюймах. Но, в принципе, пользователь может поэкспериментировать с выставлением разных значений. Отметим, что поменять разрешение можно, используя тот же алгоритм, что и при смене частоты экрана - через "Панель управления" и "Экран".

Отметим также, что при слишком большом разрешении выставить 85 ГЦ не всегда получится. И это, кстати, одна из возможных причин, почему нужная цифра может отсутствовать в списке частот. Поэтому, если драйверы стоят самые свежие, а 85 ГЦ не присутствует в списке, можно попробовать немного уменьшить разрешение монитора.

Частота ЖК-дисплеев

Следует отметить, частота обновления картинки на экране ЖК-дисплеев - в большинстве случаев параметр, не имеющий особого значения. Просто потому, что более или менее современные мониторы еще в заводских условиях настроены так, что корректировка частоты попросту не требуется. Даже если она равна 60 ГЦ, что может быть критичным для ЭЛТ-дисплеев, заметного мерцания изображения не будет в силу технологической специфики, о которой мы сказали выше. Вместе с тем, что касается ЖК-дисплеев, - для них более важен другой параметр - скорость обновления пикселей. Во многих случаях его, к слову, отождествляют с "частотой" экрана - даже в среде IT-специалистов. Это, строго говоря, не совсем верно. Хотя бы потому, что скорость обновления пикселей выражается не в герцах, а в другой единице - миллисекундах. Но если данный термин употребить в контексте "частоты", никто, пожалуй, не обвинит нас в недостатке технической грамотности. Поэтому мы, употребляя термин "частота" в отношении ЖК-дисплеев, будем понимать его как "скорость обновления пикселей".

Итак, какова лучшая частота обновления экрана в ЖК-мониторах? Самое главное - обеспечить оптимальное соответствие данного параметра потоку кадров, генерируемому видеокартой компьютера. То есть если, например, эта микросхема будет выдавать картинку с частотой в 60 герц, а ЖК-монитор не будет обладать достаточной скоростью обновления пикселей (таковым можно считать показатель примерно в 30-40 миллисекунд), то изображение на экране будет казаться "плывущим". Чем меньше соответствующий параметр на дисплее, тем лучше. Идеально, если он не превышает 15 миллисекунд. Как правило, вопрос, как увеличить частоту обновления экрана ЖК-типа, не стоит. В свою очередь, скорость обновления пикселей - параметр в большинстве случаев заводской. Изменить его в домашних условиях проблематично. Поэтому стоит обращать внимание на него непосредственно при покупке экрана.

Технологический аспект

Практически аналогичные закономерности характерны также и для других цифровых устройств, в которых используется ЖК-дисплей. То есть, например, частота обновления экрана ноутбука - параметр столь же "закрытый" для корректировки, как и в случае с мониторами для ПК.

Возможная разница в качестве изображения на жидкокристаллическом дисплее в крайне редких случаях зависит от выставленных значений частоты. Практически всегда ключевой фактор - это уровень технологий, предопределяющих, главным образом, скорость обновления пикселей. Менее важно, какая установлена частота обновления экрана. Какая лучше технология построения картинки с точки зрения "пикселизации" и цветопередачи для конкретной модели монитора - определяет в первую очередь бренд-производитель. Экраны устаревших типов, конечно, могут "выдавать" не вполне качественное изображение. Но что касается современных изделий, существенных проблем с ними, как правило, не возникает. Также отметим, что кроме "частотного" фактора, на качество картинки влияет большое количество других параметров, характерных для экранов ПК и ноутбуков. Это разрешение, тип матрицы, характеристики видеокарты.

Частота экрана ЖК-телевизоров

Каковы особенности функционирования дисплеев на ЖК-телевизорах? Что касается ключевых закономерностей - они, в принципе, те же, что на компьютерных экранах. То есть на большинстве современных телевизионных дисплеев частота обновления достаточна, чтобы изображение не "прыгало". Что касается скорости обновления пикселя - как правило, бренды-производители телевизоров стараются оптимизировать все под характеристики экрана. Поэтому особых проблем, связанных с "плавающей" картинкой, на современных ТВ не наблюдается.

Вместе с тем, частота обновления экрана телевизора - параметр, характеризующийся рядом особенностей. Каких, например? Вновь отметим некоторую двойственность употребления технических терминов. Дело в том, что есть как таковая частота обновления экранной картинки - в отношении нее работают те же принципы, что и для соответствующих типов компьютерных мониторов. Есть, в свою очередь, другой параметр, кадровая частота видеоряда, который характерен именно для телевизоров.

Касательно второй характеристики - можно провести прямую аналогию с кинопленкой. Этот параметр характеризует, сколько кадров в секунду проходит через пространство экрана. В большинстве современных ЖК-телевизоров он составляет 50 ГЦ. Очевидно, этого более чем достаточно для производства фильмов - там частота кадров, как мы уже сказали выше, как правило, в пределах 30 единиц за секунду.

Таким образом, частота обновления экрана телевизора - параметр важный, но, как и в случае с компьютерами, дополнительной корректировки, как правило, не требующий, и не подлежащий ей по умолчанию. Аналогично - с кадровой частотой видеоряда. Данный параметр - также типично заводской.

ТВ: характеристики матрицы

Можно также отметить, что технические характеристики ТВ включают ряд дополнительных параметров. Таких как, например, время отклика матрицы. Как работают ЖК-дисплеи? На кристалл, являющийся "зерном" общей картинки на дисплее, попадает электрический импульс, вследствие чего пиксель светится. Однако в силу технологических особенностей гаснет он не сразу. И потому на экране, даже после того, как на него выведен новый кадр, может на доли секунд оставаться еще не успевшая исчезнуть предыдущая картинка. Вследствие этого изображение, подобно тому, как это происходит на экранах ПК, может казаться "плавающим". Но стоит отметить - современные модели ЖК-телевизоров, как правило, снабжены аппаратными компонентами, способными корректировать такое поведение дисплея. К тому же отклик матрицы на ТВ-экранах, которые сейчас выпускаются, как правило, минимален. То есть и в случае с ЖК-телевизорами вопрос, как увеличить частоту обновления экрана, практически не стоит. Собственно, возможности для корректировки соответствующего параметра у владельцев ТВ в большинстве случаев отсутствуют.

Частота дисплеев ПК и ТВ: выводы

Итак, мы узнали, что такое частота обновления экрана, какая лучше для CRT-мониторов, в которых соответствующий параметр в ряде случаев требует ручной корректировки в настройках Windows. Какие выводы касательно изученных особенностей дисплеев разных типов мы можем сделать?

Эквивалентная частота обновления экрана в CRT-мониторе и ЖК практически ничего не значит с точки зрения сравнения качества изображения. Хотя бы потому, что принципы построения картинки в каждом случае разные. Вторая причина - на жидкокристаллических дисплеях частота - скорее, второстепенный фактор качества изображения. Более важен другой параметр - скорость обновления пикселей.

Качество картинки, как в случае с ЖК-экранами компьютеров, так и относительно CRT-дисплеев, во многом определяется характеристиками видеокарты. При этом часто бывает так, что соответствующего типа микросхема технологически отстает от монитора. То есть, например, дисплей имеет минимальный показатель скорости обновления пикселей, а видеокарта не может задействовать данный ресурс в полной мере. На практике это может выражаться в том, что при запуске компьютерных игр с высокой частотой видеоряда какие-то элементы картинки будут прорисовываться не вполне четко. Хотя, опять же, отметим - подобного рода проблемы достаточно редко встречаются сегодня. Что же касается фильмов, объективных причин того, чтобы качество видеоряда при их воспроизводстве зависело от частоты (и в большинстве случаев - скорости обновления пикселей), быть не может, просто потому, что фильмы - это, как правило, видеопоток до 30 кадров. Аналогично - с ЖК-телевизорами, особенно в современных модификациях. В них установлена оптимальная частота обновления экрана. Какая лучше модель справляется с оптимальным воспроизводством видеоряда - вопрос, при ответе на который правомерно обращать внимание, прежде всего, на уровень технологий, применяемых брендом. Частота - аспект в данном случае второстепенный.

fb.ru

Параметры акустических систем - Основы акустики

Эффективный рабочий (эффективно воспроизводимый) диапазон частот (Frequency response)

Диапазон, в пределах которого уровень звукового давления, развиваемого акустической системой, не ниже некоторой заданной величины, по отношению к уровню, усредненному в определенной полосе частот. Под уровнем звукового давления понимается отношение измеренного значения модуля звукового давления к величине 2 х 10-5 Па, выраженное в децибелах. В рекомендациях МЭК 581 - 7 минимальные требования к этому параметру составляют 50 - 12500 Гц при спаде 8 дБ по отношению к уровню, усредненному в полосе частот 100 - 8000 Гц. Характеристика в значительной степени определяющая естественность звучания акустики. Производители АС стремятся максимально приблизить значение этого параметра к максимальному диапазону воспринимаемому органами слуха человека (20 - 20000 Гц). Эффективно воспроизводимый диапазон определяется характеристиками динамиков, конструкцией и размерами акустической системы, параметрами встроенного разделительного фильтра. На низких частотах решающую роль играет объем корпуса АС. Чем он больше, тем более эффективно воспроизводятся низкие частоты.

С воспроизведением высоких частот проблем обычно не возникает, современные твитеры (высокочастотные динамики) позволяют воспроизводить даже ультразвук. Поэтому диапазон воспроизводимых частот некоторых АС превышает верхнюю границу слышимости. Считается, что в этом случае более точно передается тембровая окраска слышимых составляющих звуковой программы. Типичные значения: 100 - 18000 Гц для полочной акустики и 60 - 20000 Гц для напольной. В каталогах приводится график звукового давления развиваемого акустической системой, в зависимости от частоты (график амплитудно-частотной характеристики (АЧХ)), по которому можно определить как эффективный рабочий диапазон частот, так и неравномерность АЧХ, рассмотренную ниже.

Неравномерность амплитудно-частотной характеристики (неравномерность характеристики звукового давления)

Идеальной для воспроизведения звука была бы акустика, имеющая АЧХ в виде прямой линии. К сожалению, АЧХ реальных АС представляют собой кривые имеющие множество пиков и провалов. Появление этой неравномерности, при воспроизведении звуков различной частоты, вызвано не идеальностью, как компонентов, так и акустической системы в целом, наличием различного рода паразитных резонансов, вибрации стенок корпуса и т. п. Чем равномернее АЧХ, тем более естественным будет воспроизведение.

Степень неравномерности АЧХ характеризуется отношением максимального значения звукового давления к минимальному, или по другой методике, отношением максимального (минимального) значения к среднему, в заданном диапазоне частот, выраженное в децибелах. В рекомендациях МЭК 581 - 7, определяющих минимальные требования к аппаратуре Hi - Fi, указывается, что неравномерность АЧХ не должна превышать ± 4 дБ в диапазоне 100 - 8000 Гц. В лучших моделях АС категории Hi - Fi достигнут уровень неравномерности ± 2 дБ.

Характеристика направленности

Позволяет оценить пространственное распределение излучаемых акустической системой звуковых колебаний, и оптимально расположить акустические системы в различных помещениях. Об этом параметре позволяет судить диаграмма направленности АС, представляющая собой зависимость уровня звукового давления от угла поворота АС относительно его рабочей оси в полярных координатах, измеренная на одной или нескольких фиксированных частотах. Иногда спад амплитудно-частотной характеристики при повороте АС на некоторый фиксированный угол, отображается на основном графике, в виде дополнительных ответвлений АЧХ.

Характеристическая чувствительность (Sensitivity, Efficiency)

Отношение среднего звукового давления, развиваемого акустической системой в заданном диапазоне частот (обычно 100 - 8000 Гц) на рабочей оси, приведенное к расстоянию 1 м и подводимой электрической мощности 1 Вт. В большинстве моделей АС категории Hi - Fi уровень характеристической чувствительности составляет 86 - 90 дБ (в технической литературе вместо дБ часто указывается дБ/м/Вт). В последние годы появились высококачественные широкополосные АС с высокой чувствительностью 93 - 95 дБ/м/Вт и более. Параметр определяющий, какой динамический диапазон, то есть отношение максимального звукового давления, к минимальному, выраженное в децибелах, способна обеспечить АС. Широкий динамический диапазон позволяет с большой достоверностью воспроизводить сложные музыкальные произведения, особенно джазовую, симфоническую, камерную музыку.

Коэффициент нелинейных искажений (Distortion, Total Harmonic, THD)

Характеризует появление в процессе преобразования, отсутствовавших в исходном сигнале спектральных составляющих искажающих его структуру, то есть, в конечном счете, точность воспроизведения. Важный параметр, так как «взнос» АС в общий коэффициент нелинейных искажений всего звукового тракта как правило является максимальным. Например коэффициент нелинейных искажений современного усилителя составляет сотые доли процента, в то время как типичное значение этого параметра для акустики – единицы процентов. При увеличении мощности сигнала коэффициент нелинейных искажений возрастает.

Электрическая (акустическая) мощность (Power Handling)

Мощность определяет уровень звукового давления и динамический диапазон (с учетом характеристической чувствительности), который потенциально может обеспечить АС в определенном помещении. Используется несколько определяемых разными стандартами видов мощностей:

Характеристическая

При которой АС обеспечивает заданный уровень среднего звукового давления. В рекомендациях МЭК значение этого уровня установлено 94 дБ на расстоянии 1 метр.

Максимальная (предельная) шумовая или паспортная (Power Handling Capacity)

При которой акустическая система может длительное время работать без механических и тепловых повреждений при испытаниях специальным шумовым сигналом, близким по спектру реальным музыкальным программам (розовый шум). По методике измерений она совпадает с паспортной мощностью, определяемой в отечественных стандартах.

Максимальная (предельная) синусоидальная (Maximum Sinusoidal Testing Power, Rated Maximum Sinusoidal Power)

Мощность непрерывного синусоидального сигнала в заданном диапазоне частот, при которой АС может длительно работать без механических и тепловых повреждений.

Максимальная (предельная) долговременная (Long Term Maximum Input Power)

Мощность, которую акустика выдерживает без механических и тепловых повреждений в течение одной минуты, при таком же испытательном сигнале, как и для паспортной мощности. Испытания повторяются 10 раз с интервалом в 1 минуту.

Максимальная (предельная) кратковременная (Short Term Maximum Input Power)

Мощность, которую выдерживает АС при испытании шумовым сигналом с таким же распределением, как и для паспортной мощности, в течение 1 секунды. Испытания повторяются 60 раз с интервалом в 1 минуту.

Пиковая (максимальная) музыкальная мощность или «музыкальная» (Peak Music Power Output – PMPO)

Излюбленный параметр производителей, озабоченных сбытом своей, часто не очень качественной, аппаратуры. Методика измерения, определяемая немецким стандартом DIN 45500, следующая: на АС подается кратковременный (менее 2 секунд) сигнал частотой ниже 250 Гц. Акустика считается прошедшей испытания, если при этом нет заметных на слух(!) искажений. Данная методика позволяет упомянутым выше производителям снабжать свои изделия яркими наклейками с такими примерно текстами: "P.M.P.O. …" (или "Musical Power…") "…100!", "…200!" и даже… "…1000 Wt!". Понятно, что этот параметр слабо характеризует реальное качество воспроизведения звука.

При выборе пары усилитель плюс АС, желательно, чтобы реальная максимальная мощность акустической системы превышала мощность усилителя приблизительно на 30 и более процентов. В этом случае вы будете застрахованы от выхода из строя акустики, по причине подачи на нее сигнала недопустимо большого уровня. Например с усилителем мощностью 50 Вт на канал, можно использовать колонки с паспортной мощностью 75 Вт каждая. Какая мощность усилителя достаточна для качественного воспроизведения звука? Во многом это определяется параметрами помещения, характеристиками акустических систем, потребностями самого слушателя. С большой степенью приблизительности считается, что для современных жилых помещений среднего размера мощность усилителя должна быть не менее 20 Вт.

Электрическое (входное) сопротивление (импеданс)

Наиболее распространенные значения: 4, 8 или 16 Ом. Этот параметр важен при выборе усилителя, с которым будет работать АС. Оптимально использовать акустическую систему с сопротивлением, соответствующим указанному в паспорте усилителя. Такое решение будет обеспечивать идеальное согласование характеристик акустики и усилителя, то есть максимальное качество звука.

baseacoustica.ru

сколько надо для монитора и телевизора

В документации для любого компьютерного монитора или современного ЖК телевизора содержится характеристика — частота обновления экрана. Не всегда даже продавцы консультанты способны объяснить, как влияет частота на изображение, в чем отличие картинок с 50, 100 и 200Гц, и какие показатели выбирать лучше. Однако существует довольно заметная разница: число Гц на качестве сказывается существенно. Иногда стоит увеличить сумму на приобретение более удачной модели, где будут плавные переходы динамических кадров и четкое изображение.

Содержание статьи

Количество Гц в хорошем телевизоре

Показатель частоты монитора не нужно путать с частотой в съемках кино, которая равна 24 к/с. Еще существует показатель теле контента с 50 кадрами. Развертка или частота обновления экрана измеряется в герцах. Количество Гц указывает, сколько за секунду кадров используемая панель готова показать.

Чем выше частота регенерации монитора, тем картинка будет более четкой, а мерцания и «смазанные» движения будут отсутствовать.

Если посмотреть в историю, то морально устаревшие телевизоры и мониторы имели скромную частоту 50 Гц. В них при быстром перемещении объекта «размазанные» сюжеты не скрывались. Затем стали использоваться более технологичные устройства, в который частота обновления экрана стала составлять 100 Гц. В новых моделях неприятное мерцание устранили полностью, но качество было не лучшее.

Теле контентом выдается 50 к/с, что соответствует 50 Гц. Обновленными моделями промежуточные кадры «дорисовывались», что обеспечило незначительное увеличение четкости картинки до удовлетворительного уровня. Поэтому частота обновления строк оказывает существенное влияние. Если произвести сравнение с предшественниками, то экраны считались отличными, но отсутствовала более качественная альтернатива.

Высокое качество картинки способна обеспечить частота обновления экрана с показателем минимум 200 Гц. При таких параметрах цифровая видео обработка способна проецировать уже 3 дополнительных промежуточных кадра. Хотя производители оговорят, что частоты в телевизоре 100 Гц будет вполне достаточно сейчас, но есть нюансы. Если одновременно включить 2 телевизора, которые имеют разную частоту развертки экрана с показателями 100 и 200 Гц, разница будет заметна. Во внимание следует принимать данные про разрешение экрана. В современных видах 4К телевизоров 120 Гц будет достаточно.

Процесс развертки: техническое описание

Чтобы понять, что означает частота обновления кадров монитора и как осуществляется дорисовка кадров, следует разобрать виды ЖК мониторов и телевизоров, которые присутствуют сейчас на рынке.

  1. LCD. Были одними из начальных разработок серии ЖК телевизоров. Сейчас отличаются относительной дешевизной. Появилось множество новых технологий, внедряемых в улучшенные модели. В соответствии со сравнительными параметрами, они уступают LED моделям. Изображение формируется на основе флуоресцентной CCFL подсветки. Данные изделия не отличаются картинкой хорошей четкости. С имеющейся частотой развертки телевизора более 100 Гц мерцание отсутствует полностью.
  2. LED. Являются усовершенствованной категорией мониторов LCD, которые дополняются системой подсветки изображения с помощью диодов LED. Подобные мониторы имеют высокие показатели контрастности. По площади экрана может быть разное размещение диодов, что оказывает влияние на качества картинки. При маркировке «Edge LED» подсветка сосредотачивается только в торцевых частях. Стоимость данного телевизора будет дешевле, но и изображение несколько хуже.
  3. Плазменная панель. Для них не нужна дополнительная подсветка. Использующиеся плазменные ячейки подсвечиваются путем воздействия на люминофоры ультрафиолетовыми лучами. Если сравнивать с двумя вышеперечисленными вариантами, то именно плазма дает более высокую контрастность и глубокие темные оттенки. Недолговечность компенсируется доступной стоимостью, после 3 – 4 лет работы панель начинает выгорать, а качество картинки заметно снижается. Список минусов дополняют частые сбои при использовании съемных модулей и ощутимое потребление энергоресурсов.
  4. OLED. В современном мире относится к вершине теле прогресса. Первые варианты изогнутых телевизоров появились в 2015 г. Подобное экстравагантное исполнение не имело большого спроса. Затем стали появляться плоские привычные OLED изделия. Производители смогли обеспечить высококачественную картинку без использования дополнительной подсветки. Достоинства данной технологии очевидны при сравнении с OLED.

Теперь рассмотрим, что такое частота обновления экрана. Телевизионный ряд, который предоставляется по некоммутируемым каналам связи, составляет 50 к/с. С помощью цифровой обработки видео каждый кадр копируется и показывается дважды. Таким образом появилась частота кадров монитора 100 Гц. Такая частота монитора для игр является доставочной. Эта технология исключает наиболее не комфортный дефект изображения, заключающийся в мерцании.

В дальнейших разработках были использованы технологии компьютерной анимации. В ней техника за основу берет 2 кадра и обеспечивает создание промежуточных интеллектуальных способов. Получается четкое и плавное движение. Отличием от ПК стало отсутствие понятия у дисплея обновления экрана телевизора какая картинка должна быть следующей – «будущий кадр». Кадры дорисовываются на основе анализа прошлых. Это залог плавного и точного изображения. Узнать, какая лучше частота обновления монитора можно путем просмотра движущихся объектов на высокой скорости. Они должны быть не размытыми и четкими.

Что предлагается на современном рынке?

В наиболее современных панелях сейчас у телевизора частота обновления составляет 600 и 800 ГЦ и с наличием встроенной Sub-Field Driving технологии. Подобная технология – это залог непревзойденного качества картинки. У покупателей появляются разные сомнения про такие параметры. Недоверие к производителям стала появляться с момента выхода подобной техники на рынок. В то время маркетологи приписывали в телевизорах частоту обновления, а технология дорисовки картинок вставляла не копии кадров, а обычные черные картинки. Пользователи не были способны их воспринять. Тогда какая частота монитора лучше для глаз и как проверить обновления монитора как узнать точный показатель частоты?

В современных ЖК телевизорах популярных марок показатель частоты соответствует заявленным параметрам, в этом не стоит сомневаться. Наилучшим для глаза человека будет качественное изображение без мерцаний и хорошо проявившее себя при динамических сценах.

На что влияет разрешение?

Когда рассматривается частота развертки монитора, необходимо упомянуть и иные важные показатели. Важно обращать внимание на экранное разрешение, которое значительно влияет на качество картинки. Измеряется показатель в пикселях.Путем непрерывного развития и совершенствования технологий, все новые модели значительно лучше предыдущих. Еще недавно пик популярности приходил на модели с 720 p, а Full HD только появились и имели вдвое повышенную цену. Сейчас их цена почти сравнялась. На современном рынке уже присутствуют модели 4K Ultra HD.

В новом 4К или UHDTV отличная цветопередача. Здесь в телевизорах частота обновления в 120 Гц способна обеспечить реалистичное, четкое и чистое изображение. Сейчас сложно оценить, что лучше – использование полного погружения в 3D или новый формат разрешения с сверхреалистичными картинками. Хотя разрешение и отходит на второй план, но еще продолжительное время будет активно использоваться. Много контента «заточено» под 1080p, а фильмы в UHDTV форме еще практически не выпускают. Поэтому определить, какая частота лучше для телевизора, можно только по качеству входящего сигнала.

Итоги

Принимая во внимание все вышеперечисленные параметры, можно сделать такие выводы:

  • Развертка отвечает за четкую раскадровку подвижных объектов и плавное изображение.
  • Разрешение обеспечивает для каждого кадра реалистичную прорисовку, чтобы рассматривать все детали, передавать точный цвет и движение.
  • Во время выбора телевизора, лучше анализировать в совокупности ключевые параметры.

Теперь Вы знаете, на что влияет частота обновления монитора. При покупке включайте экран и сравнивайте в магазине изображение. Консультанты на словах никогда не смогут описать качество изображения различных моделей. Если подойти к выбору с долей критичности, удовлетворение и максимальный комфорт от покупки будут на высоте.

monitorov.net

Какая лучше частота обновления экрана телевизора

Паспорт каждого современного ЖК-телевизора или компьютерного монитора содержит такую характеристику, как частота обновления экрана. Но даже продавец-консультант не всегда способен объяснить, как фактически этот показатель влияет на изображение, чем отличается картинка в 50Гц, 100Гц, 200Гц и какую частоту лучше выбрать. Однако разница существует, и довольно заметная: количество Гц ощутимо сказывается на качестве. Порой стоит несколько увеличить расходы на покупку, но приобрести более удачную модель с четким изображением и плавными переходами динамических кадров.

Сколько герц имеет хороший телевизор?

Не стоит путать этот показатель с частотой кино-съемки, которая равняется 24 кадрам в секунду, или показателем теле-контента, равному 50 кадрам. Частота обновления экрана телевизора — или развертка — измеряется в Гц (герц). Показатель Гц указывает, какое число кадров за секунду способна показать панель.

Чем выше данная характеристика, тем более четкой будет картинка, без «смазанных» движений и мерцания.

Если немного углубиться в историю, то уже морально устаревшие мониторы и телевизоры обладали скромной частотой 50Гц, не скрывая «размазанных» сюжетов при быстром перемещении объекта. Позже их заменили более технологичными устройствами с разверткой 100Гц. В новинках полностью устранили неприятное мерцание, но говорить о качестве все еще не приходилось. Как сказано выше, теле-контент выдает 50 кадров в секунду (что равно 50Гц), обновленные модели «дорисовывали» промежуточные кадры, тем самым, незначительно увеличивая четкость изображения до удовлетворительного уровня. Но в сравнении с предшественниками, телевизоры считались отличными, а более качественная альтернатива отсутствовала.

Высокое качество изображения обеспечат как минимум 200Гц, когда цифровая обработка видео проецирует уже три дополнительных промежуточных кадра. Хоть производитель и обещает, что 100Гц для современной техники достаточно, но это не совсем правда. Достаточно включить два телевизора с разной частотой: в сравнении разница в качестве при развертке в 100 и 200 Гц будет заметна. Но следует принимать во внимание и разрешение экрана. Для современных типов телевизоров 4К 120 Гц вполне достаточно.

Техническое описание процесса развертки

Чтобы понять, что такое частота обновления, и как происходит дорисовка кадров, нужно разобраться в видах жидкокристаллических телевизоров и мониторов, которые сегодня присутствуют на рынке.

  1. LCD (Liqud Crystal Display) были одними из первых разработок ЖК-телевизоров. В настоящее время они стоят относительно дешево, так как появилось много улучшенных моделей и новых технологий. Так, LCD панели уступают LED по сравнительным характеристикам. Формирование изображения осуществляется с помощью флуоресцентной подсветки CCFL. Такие устройства не отличаются хорошей четкостью картинки, но при развертке более 100Гц можно рассчитывать на полное отсутствие мерцания.
  2. LED (Light-emitting Diode) – это усовершенствованные LCD мониторы, дополненные новой системой подсветки изображения с использованием LED-диодов. Такие мониторы обладают более высокой контрастностью. Обратите внимание: размещение диодов по площади экрана может быть разным, что сказывается на качестве передачи картинки. Модели с маркировками “Full LED”, “True LED”, “Direct LED” обладают более высоким качеством, в них диодная подсветка распределена по всей площади экрана, а вот маркировка «Edge LED» означает, что подсветка сосредоточена в торцевых частях. Подробнее об этих нюансах можно прочесть в статье о технологии LED. Такой телевизор будет значительно дешевле, но изображение будет несколько хуже.
  3. Плазменная панель (Plasma Display Panel) не требует дополнительной подсветки: плазменные ячейки подсвечиваются благодаря воздействию ультрафиолетовых лучей на люминофоры. Плазма обеспечивает более высокую контрастность в сравнении с двумя вышеописанными видами и глубокие темные оттенки. Доступная стоимость панели компенсируется недолговечностью: за 3 – 4 года панель несколько выгорает, качество изображения заметно снижается. Дополняет список недостатков ощутимое потребление энергоресурсов и частые сбои при обнаружении съемных модулей. Такой телевизор может не видеть жесткий диск или флешку, гарнитуру и аналогичные подключаемые устройства.
  4. OLED (Organic Light-emitting Diode) в современном мире – вершина технического теле-прогресса. Это были первые изогнутые телевизоры в 2015 году, но экстравагантное исполнение не пользовалось большим спросом, и после появились привычные плоские OLED устройства. Производители добились высокого качества картинки без какой-либо дополнительной подсветки. Преимущества этой технологии по сравнению с LED очевидны.

Теперь о самой технологии частоты обновления дисплея. Телевизионный ряд, предоставляемый по каналам некоммутируемой связи, выдает 50 кадров в секунду. Цифровая обработка видео позволила копировать каждый кадр и показывать его дважды, так родилась развертка 100Гц. Технология позволила исключить самый некомфортный дефект изображения – мерцание.

Дальнейшие разработки позаимствовали технологии из компьютерной анимации, когда техника берет за основу два кадра и создает все промежуточные интеллектуально, создавая плавное и четкое движение. В отличие от компьютера, у телевизора нет понятия «будущий кадр», но и этого оказалось достаточно. Дорисовка дополнительных кадров осуществляется на основе анализа прошлых, что обеспечивает высокую точность и плавность изображений. Объекты, движущиеся на высокой скорости, четкие и не размытые.

Что предлагает рынок в настоящее время

Самыми современными сегодня считаются панели с частотой развертки в 600 и 800Гц со встроенной технологией Sub-Field Driving, которая обещает непревзойденное качество картинки. Существует немало сомнений насчет подобных характеристик. Недоверие к производителям рождено уже давно, когда подобная техника только начинала выходить на рынок. В те времена маркетологи не стеснялись приписывать герцы, когда технологии дорисовки изображений вставляли не копии кадров, а просто черные картинки, которые глаз не способен воспринять. Таким образом, качество не повышалось, зато сбыт цифровой электроники шел очень хорошо. Современные ЖК-телевизоры известных марок соответствую заявленным в паспорте параметрам, и здесь сомневаться не стоит. Важнее позаботиться о наличии необходимых кабелей, позволяющих передавать оцифрованные каналы спутникового или кабельного ТВ.

На что влияет разрешение

Говоря о частоте развертки телевизора, нельзя не упомянуть о других важных параметрах. Кроме вышеописанного показателя стоит обратить внимание на разрешение экрана, которое также оказывает влияние на качество изображения. Показатель измеряется в пикселях (p).

Стоит отметить, что непрерывное развитие технологий, их усовершенствование, приводит к тому, что каждая новая модель значительно лучше предыдущей. Около пяти лет назад на пике популярности были устройства в 720p, а модели Full HD в 1080p только появились и стоили вдвое дороже, но сегодня их стоимость практически сравнялась. Современный рынок обновлен новым показателем разрешения HDTV – 4K Ultra HD, способным отображать в четыре раза больше пикселей, чем Full HD.

Новый UHDTV или 4К обладает большей цветопередачей, частота развертки 120Гц обеспечивает чистое, четкое и реалистичное изображение. Сложно оценить, что лучше: полное погружение в 3D или свехреалистичные картинки нового формата разрешения. Но не стоит списывать со счетов Full HD в 1080p. Разрешение хоть и отходит на второй план, но будет активно использоваться еще продолжительное время. Большинство контента «заточено» под данное разрешение, в отличие от нового UHDTV, под которое и фильмов еще практически не выпустили, а существующие стоят не дешево. Поэтому выбрать, какое разрешение телевизора лучше, можно лишь, исходя из качества входящего сигнала.

Более того, вес такого файла значительно больше, текущие кабели, скорость Интернета и Wi-Fi-роутер тоже придется заменить на более быстрые и мощные, способные воспроизводить и отображать видео сверхточного формата.

Подводя итог

Принимая во внимание все значимые параметры, можно сделать несколько выводов.

  1. Развертка обеспечивает плавное изображение, четкую раскадровку движущихся объектов.
  2. Разрешение обеспечивает реалистичную прорисовку каждого кадра, когда можно рассмотреть все детали, точно передается цвет, движение воды или людей.
  3. Выбирая, какая модель телевизора лучше, стоит анализировать все ключевые характеристики в совокупности, чтобы и разрешение экрана, и частота обновления кадров были на уровне.

И еще, не стесняйтесь включать и сравнивать изображение в магазине перед покупкой. Консультанты никогда не смогут на словах описать качество картинки той или иной модели. Максимальный комфорт и удовлетворение от нового приобретения будут на высоте, если подойти к выбору с долей критичности.

tehnika.expert