Устройство и основные характеристики центрального процессора. Роль процессора в компьютере


Устройство и основные характеристики процессора

Информация о процессоре компьютера, его значении, технологии изготовления, а также о характеристиках, которые необходимо учитывать при его выборе и приобретении.

Что такое процессор и как он устроен

Центральный процессор (микропроцессор, центральное процессорное устройство, CPU, разг. – "проц", "камень") – сложная микросхема, являющаяся главной составной частью любого компьютера. Именно это устройство осуществляет обработку информации, выполняет команды пользователя и руководит другими частями компьютера. Уже много лет основными производителями процессоров являются американские компании Intel и AMD (Advanced Micro Devices). Есть, конечно, и другие достойные производители, но до уровня указанных лидеров им далеко. Intel и AMD постоянно борются за первенство в изготовлении все более производительных и доступных процессоров, вкладывая в разработки огромные средства и много сил. Их конкуренция - важный фактор, содействующий быстрому развитию этой отрасли. Внешне центральный процессор не представляет собой ничего выдающегося – небольшая плата (где-то 7 х 7 см.) с множеством контактов с одной стороны и плоской металлической коробочкой с другой. Но на самом деле внутри этой коробочки хранится сложнейшая микроструктура из миллионов транзисторов.

Как изготавливают процессоры. Что такое техпроцесс

Основным материалом при производстве процессоров является самый обычный песок, а точнее сказать кремний, коего в составе земной коры около 30%. Из очищенного кремния сначала изготавливают большой монокристалл цилиндрической формы, который разрезают на "блины" толщиной около 1 мм. Затем с использованием технологии фотолитографии в них создаются полупроводниковые структуры будущих процессоров. Фотолитография чем-то напоминает процесс печати фотографий с пленки, когда свет, проходя через негатив, действует на поверхность фотобумаги и проецирует на ней изображение. При изготовлении процессоров своеобразной фотобумагой выступают упомянутые выше кремниевые "блины". Роль света играют ионы бора, разогнанные до огромной скорости высоковольтным ускорителем. Они пропускаются через специальные "трафареты" - системы высокоточных линз и зеркал, вкрапливаются в кремний и создают в нем микроскопическую структуру из множества транзисторов. Сегодняшние технологии позволяют создавать транзисторы размером всего 22 нанометра (толщина человеческого волоса - около 50000 нм). Со временем техпроцесс изготовления процессоров станет еще совершеннее. По прогнозам, их транзисторы уменьшатся как минимум до 14 нм. Чем тоньше техпроцесс – тем больше транзисторов можно поместить в один процессор, тем он будет производительнее и энергоэффективнее. Созданная таким образом полупроводниковая структура вырезается из кварцевого "блина" и помещается на текстолит. На обратную его сторону выводятся контакты для обеспечения подсоединения к материнской плате. Сверху кристал защищается от повреждения металлической крышкой (см. рис. выше).

Понятие архитектуры, ядра, ревизии процессора

Процессоры прошли сложную эволюцию и сейчас продолжают развиваться. Производители совершенствуют не только технологию изготовления, но и внутреннюю структуру процессоров. Каждое новое их поколение отличается от предыдущего строением, количеством и характеристиками входящих в их состав элементов. Процессоры, в которых используются те же базовые принципы строения, называют процессорами одной архитектуры, а эти принципы - архитектурой (микроархитектурой) процессора. В пределах одной архитектуры процессоры могут существенно отличаться - частотами системной шины, техпроцессом изготовления, размером и структурой внутренней памяти и некоторыми другими особенностями. О таких процессорах говорят, что они имеют разные ядра. В рамках доработки одного ядра производители могут делать небольшие изменения с целью устранения мелких недочетов. Такие усовершенствования, которые "не тянут" на звание самостоятельных ядер, называют ревизиями. Архитектурам и ядрам присваиваются определенные имена, а их ревизиям – цифробуквенные обозначения. Например, все модели Intel Core 2 Duo являются процессорами микроархитектуры Intel Core и производились с ядрами Allendale, Conroe, Merom, Kentsfield, Wolfdale, Yorkfield. У каждого из этих ядер были еще и разные ревизии.

Основные характеристики процессора

• Количество вычислительных ядер. Многоядерные процессоры – это процессоры, содержащие на одном процессорном кристалле или в одном корпусе два и более вычислительных ядра. Многоядерность, как способ повышения производительности процессоров, используется с относительно недавнего времени, но признана самым перспективным направлением их развития. Для домашних компьютеров уже существуют процессоры с 8 ядрами. Для серверов на рынке есть 12-ядерные предложения (Opteron 6100). Разработаны прототипы процессоров, содержащие около 100 ядер. Эффективность вычислительных ядер разных моделей процессоров отличается. Но в любом случае, чем их (ядер) больше, тем процессор производительнее. • Количество потоков. Чем больше потоков – тем лучше. Количество потоков не всегда совпадает с количеством ядер процессора. Так, благодаря технологии Hyper-Threading, 4-ядерный процессор Intel Core i7-3820 работает в 8 потоков и во многом опережает 6-тиядерных конкурентов. • Размер кеша 2 и 3 уровней. Кеш - это очень быстрая внутренняя память процессора, которая используется им как буфер для временного хранения информации, обрабатываемой в конкретный момент времени. Чем кеш больше – тем лучше. Структура не всех современных процессоров предусматривает наличие кеша 3 уровня, хотя критичным моментом это не является. Так, по результатам многих тестов производительность процессоров Intel Core 2 Quadro, выпускавшихся с 2007 г. по 2011 г. и не имеющих кеша 3 уровня, даже сейчас выглядит достойно. Правда, кеш 2 уровня у них достаточно большой. • Частота процессора. Здесь все просто – чем выше частота процессора, тем он производительнее. • Скорость шины процессора (FSB, HyperTransport или QPI). Через эту шину центральный процессор взаимодействует с материнской платой. Ее скорость (частота) измеряется в мегагерцах и чем она выше - тем лучше. • Техпроцесс. Понятие техпроцесса рассматривалось в предыдущем пункте этой статьи. Чем тоньше используемый техпроцесс, тем больше процессор содержит транзисторов, меньше потребляет электроэнергии и меньше греется. От техпроцесса во многом зависит еще одна важная характеристика процессора - TDP. • TDP. Termal Design Point - показатель, отображающий энергопотребление процессора, а также количество тепла, выделяемого им в процессе работы. Единицы измерения - Ватты (Вт). TDP зависит от многих факторов, среди которых главными являются количество ядер, техпроцесс изготовления и частота работы процессора. Кроме прочих преимуществ, "холодные" процессоры (с TDP до 100 Вт) лучше поддаются разгону, когда пользователь изменяет некоторые настройки системы, вследствие чего увеличивается частота процессора. Разгон позволяет без дополнительных финансовых вложений увеличить производительность процессора на 15 – 25 %, но это уже отдельная тема. В то же время, проблему с высоким TDP всегда можно решить приобретением эффективной системы охлаждения (см. последний пункт этой статьи). • Наличие и производительность видеоядра. Последние технические достижения позволили производителям, помимо вычислительных ядер, включать в состав процессоров еще и ядра графические. Такие процессоры, кроме решения своих основных задач, могут выполнять роль видеокарты. Возможностей некоторых из них вполне достаточно для игры в компьютерные игры, не говоря уже о просмотре фильмов, работе с текстом и решении остальных задач. Если видеоигры - не главное предназначение компьютера, процессор со встроенным графическим ядром позволит сэкономить на приобретении отдельного графического адаптера. • Тип и максимальная скорость поддерживаемой оперативной памяти. Эти характеристики процессора необходимо учитывать при выборе оперативной памяти, с которой он будет использоваться. Нет смысла переплачивать за быстрые модули ОЗУ, если процессор не сможет реализовать все их преимущества.

Что такое сокет

Важным моментом, который нужно учитывать при выборе процессора, является то, для установки в сокет какого типа он предназначен. Сокет (socket, разъем центрального процессора) – это щелевой или гнездовой разъём на материнской плате, в который устанавливается процессор. Каждый процессор можно установить только на материнскую плату с подходящим разъемом, имеющим соответствующие размеры, необходимое количество и структуру контактных элементов. Каждый новый сокет разрабатывается производителями процессоров, когда возможности старых разъемов уже не могут обеспечить нормальную работу новых изделий. Для процессоров Intel длительное время использовался (и сейчас еще используется) сокет LGA775 (процессоры Pentium 4, Pentium D, Celeron D, Pentium EE, Core 2 Duo, Core 2 Extreme, Celeron, Xeon серии 3000, Core 2 Quad). С началом производства линейки новых процессоров были введены сокеты LGA1366, LGA1156, LGA1155 (процессоры i7, i5, i3) и др. Разъемы для процессоров от AMD за последние годы также изменились - AM2, AM2+, AM3 и т.д. О более ранних сокетах, думаю, смысла вспоминать нет, поскольку компьютеры на их основе – уже раритет. Если вы задумали модернизировать старый компьютер путем приобретения более производительного процессора, убедитесь, что по сокету он подойдет к вашей старой материнской плате. Иначе однозначно придется менять и ее. Устанавливать центральный процессор в сокет системной платы нужно аккуратно, чтобы не повредить контакты.

Система охлаждения процессора

Процессор нуждается в надлежащем охлаждении, иначе он может выйти из строя. Как известно, верхняя поверхность процессора представляет собой металлическую коробку, выполняющую, кроме защитных, еще и теплоотводные функции. Поверх процессора на материнской плате устанавливается система охлаждения. Ее теплоотводные элементы должны плотно прижиматься к поверхности процессора. Для улучшения передачи тепла с процессора на радиатор системы охлаждения, между ними прокладывается слой термопасты – специального пастообразного вещества с высокой теплопроводностью.При подборе системы охлаждения процессора нужно учитывать его TDP (рассматривалось выше в пункте о характеристиках процессора). Процессоры обычно продаются в так называемом боксовом варианте поставки, когда в комплект входит штатная система охлаждения – боксовый куллер. Но иногда эффективность такого куллера является недостаточной (например, если был произведен разгон и частота процессора, а следственно и его TDP, возросла). Нормальная температура работы процессора - до 50 градусов Цельсия (при пиковых нагрузках возможно чуть больше). Средства измерения температуры встроены в центральный процессор. При помощи специальных программ температуру можно отслеживать в режиме реального времени (например, программой SpeedFan). • CPU-Z: ⇒ Официальная страница загрузки ⇒ Скачать копию для Windows 32-bit (2,6 MB) ⇒ Скачать копию для Windows 64-bit (3 MB) Современный процессор устроен так, что при достижении им критичной температуры он отключается и не включается, пока не остынет. Это позволяет предупредить его повреждение под воздействием высокой температуры. Перегрев возможен вследствие низкой эффективности системы охлаждения, выхода ее из строя, засорения пылью, пересыхания термопасты и др.

www.chaynikam.info

Устройство процессора и его назначение

Описание и назначение процессоров

На самом деле то, что мы сегодня называем процессором, правильно называть микропроцессором. Разница есть и определяется видом устройства и его историческим развитием.

Первый процессор (Intel 4004) появился в 1971 году.

Внешне представляет собой кремневую пластинку с миллионами и миллиардами (на сегодняшний день) транзисторов и каналов для прохождения сигналов.

Назначение процессора – это автоматическое выполнение программы. Другими словами, он является основным компонентом любого компьютера.

Устройство процессора

Ключевыми компонентами процессора являются арифметико-логическое устройство (АЛУ), регистры и устройство управления. АЛУ выполнят основные математические и логические операции. Все вычисления производятся в двоичной системе счисления. От устройства управления зависит согласованность работы частей самого процессора и его связь с другими (внешними для него) устройствами. В регистрах временно хранятся текущая команда, исходные, промежуточные и конечные данные (результат вычислений АЛУ). Разрядность всех регистров одинакова.

Кэш данных и команд хранит часто используемые данные и команды. Обращение в кэш происходит намного быстрее, чем в оперативную память, поэтому, чем он больше, тем лучше.

Схема процессора

Работа процессора

Работает процессор под управлением программы, находящейся в оперативной памяти.

(Работа процессора сложнее, чем это изображено на схеме выше. Например, данные и команды попадают в кэш не сразу из оперативной памяти, а через блок предварительной выборки, который не изображен на схеме. Также не изображен декодирующий блок, осуществляющий преобразование данных и команд в двоичную форму, только после чего с ними может работать процессор.)

Блок управления помимо прочего отвечает за вызов очередной команды и определение ее типа.

Арифметико-логическое устройство, получив данные и команду, выполняет указанную операцию и записывает результат в один из свободных регистров.

Текущая команда находится в специально для нее отведенном регистре команд. В процессе работы с текущей командой увеличивается значение так называемого счетчика команд, который теперь указывает на следующую команду (если, конечно, не было команды перехода или останова).

Часто команду представляют как структуру, состоящую из записи операции (которую требуется выполнить) и адресов ячеек исходных данных и результата. По адресам указанным в команде берутся данные и помещаются в обычные регистры (в смысле не в регистр команды), получившийся результат тоже сначала оказывается в регистре, а уж потом перемещается по своему адресу, указанному в команде.

Характеристики процессора

Тактовая частота процессора на сегодняшний день измеряется в гигагерцах (ГГц), Ранее измерялось в мегагерцах (МГц). 1МГц = 1 миллиону тактов в секунду.

Процессор «общается» с другими устройствами (оперативной памятью) с помощью шин данных, адреса и управления. Разрядность шин всегда кратна 8 (понятно почему, если мы имеем дело с байтами), изменчива в ходе исторического развития компьютерной техники и различна для разных моделей, а также не одинакова для шины данных и адресной шины.

Разрядность шины данных говорит о том, какое количество информации (сколько байт) можно передать за раз (за такт). От разрядности шины адресазависит максимальный объем оперативной памяти, с которым процессор может работать вообще.

На мощность (производительность) процессора влияют не только его тактовая частота и разрядность шины данных, также важное значение имеет объем кэш-памяти.

inf1.info

Из чего состоит процессор? Основные части и их функции

Многие уверенные пользователи ПК прекрасно знают основные составляющие компьютера, но мало кто понимает, из чего состоит процессор. А между тем это главное устройство системы, которое выполняет арифметические и логические операции. Основная функция процессора состоит в получении информации, ее обработке и отдаче конечного результата. Звучит все просто, но на самом деле процесс этот сложный.

Из чего состоит процессор

ЦП ‒ это миниатюрная кремниевая пластина прямоугольной формы, которая содержит миллионы транзисторов (полупроводников). Именно они реализуют все функции, которые выполняет процессор.

Почти все современные процессоры состоят из следующих компонентов:

  1. Несколько ядер (редко 2, чаще 4 или 8), которые выполняют все функции. По сути, ядро представляет собой отдельный миниатюрный процессор. Несколько интегрированных в основной чип ядер параллельно работают над задачами, что ускоряет процесс обработки данных. Однако не всегда большее количество ядер означает более быструю работу чипа.
  2. Несколько уровней памяти КЭШ (2 или 3), благодаря чему время взаимодействия ОЗУ и процессора сокращается. Если информация находится в КЭШе, то время доступа к ней минимизировано. Следовательно, чем большим будет объем КЭШа, тем больше информации в него поместится и тем быстрее будет сам процессор.
  3. Контроллер ОЗУ и системной шины.
  4. Регистры ‒ ячейки памяти, где хранятся обрабатываемые данные. Они всегда имеют ограниченный размер (8, 16 или 32 бит).
  5. Сопроцессор. Отдельное ядро, которое предназначается для выполнения операций определенного типа. Чаще всего в виде сопроцессора выступает графическое ядро (видеокарта).
  6. Адресная шина, которая связывает чип со всеми подключенными к материнской плате устройствами.
  7. Шина данных – для связи процессора с оперативной памятью. По сути, шина представляет собой набор проводников, посредством которых передается или принимается электрический сигнал. И чем больше будет проводников, тем лучше.
  8. Шина синхронизации – позволяет контролировать такты и частоту работы процессора.
  9. Шина перезапуска – обнуляет состояние чипа.

Все эти элементы принимают участие в работе. Однако самым главным среди них, безусловно, является именно ядро. Все остальные указанные составляющие лишь помогают ему выполнять основную задачу. Теперь, когда вы понимаете, из чего состоит процессор, можно более детально рассмотреть его основной компонент.

Ядра

Говоря о том, из чего состоит центральный процессор, в первую очередь нужно упомянуть ядра, так как именно они представляют собой основные его части. Ядра включают в себя функциональные блоки, выполняющие арифметические или логические операции. В частности, можно выделить:

  1. Блок выборки, декодирования и выполнения инструкций.
  2. Блок сохранения результатов.
  3. Блок счетчика команд и т.д.

Как вы поняли, каждый из них выполняет определенную задачу. Например, блок выборки инструкций считывает их по указанному в счетчике команд адресу. В свою очередь, блоки декодирования определяют, что именно надо сделать процессору. В совокупности работа всех этих блоков и позволяет добиться выполнения указанной пользователем задачи.

Задача ядер

Отметим, что ядра могут выполнять только математические расчеты и операции сравнения, а также перемещать данные между ячейками ОЗУ. Впрочем, этого хватает, чтобы пользователи могли играть в игры на компьютере, смотреть фильмы, просматривать веб-страницы.

По сути, любая компьютерная программа состоит из простых команд: сложить, умножить, переместить, поделить, перейти к инструкции при выполнении условия. Конечно, это лишь примитивные команды, однако их объединение между собой позволяет создать сложную функцию.

Регистры

Из чего состоит процессор еще, кроме ядер? Регистры – второй важный его компонент. Как вы уже знаете, это быстрые ячейки памяти, где находятся обрабатываемые данные. Они бывают разными:

  1. A, B, C – используются для хранения информации во время обработки. Их всего три, но этого достаточно.
  2. EIP – в этом регистре хранится адрес следующей в очереди инструкции.
  3. ESP – адрес данных в ОЗУ.
  4. Z – здесь находится результат последней операции сравнения.

Этими регистрами процессор не ограничивается. Есть и другие, однако указанные выше являются самыми главными – именно ими чаще всего пользуется чип для обработки данных во время выполнения той или иной программы.

Заключение

Теперь вы знаете, из чего состоит процессор и какие его модули являются основными. Подобный состав чипов не является постоянным, так как они постепенно совершенствуются, добавляются новые модули, усовершенствуются старые. Однако сегодня то, из чего состоит процессор, его назначение и функционал являются именно такими, как описано выше.

Описанный выше состав и приблизительный принцип работы систем процессора упрощены до минимума. На самом деле весь процесс является более сложным, но для его понимания необходимо получать соответствующее образование.

fb.ru

Для чего предназначен процессор: описание, характеристики и применение

Пользователи компьютеров очень часто путают между собой такие два понятия как системный блок и процессор, называя первый – вторым. Это в корне неправильно. Сам процессор – это устройство, предназначенное для управления работой вычислительной машины по заранее заданной последовательности команд, которая называется программой, и для выполнения операций по обработке информации.

Кроме того, есть и другие устройства с похожим названием. Например, текстовый процессор предназначен для создания документов и их форматирования. К такому типу программ относится Microsoft Word.

Что это такое?

А само устройство, являющееся мозгом компьютера, еще называют микропроцессором. Для чего предназначен процессор в компьютере? Это такая интегральная схема, которая управляет работой персонального компьютера. Создается такая схема на одном или нескольких кристаллах, сделанных из полупроводника при помощи очень сложной технологии, относящейся к сфере микроэлектроники.

Все то что может делать компьютер с информацией, определено системой команд самого процессора. Они входят в инструкции по управлению работой компьютера. Одна отдельно взятая команда – это одна операция, выполняемая вычислительной машиной. Например, выполнение арифметических действий, логических операций, определение последовательности команд для выполнения, передача информации из памяти одного устройства в память другого.

Таков краткий ответ на вопрос, для чего предназначен процессор.

Устройство

Так как процессор – это устройство, предназначенное для обработки данных, он состоит из следующих элементов:

  • арифметико-логическое устройство;
  • устройство управления;
  • регистры памяти.

Устройство управления, как понятно из его названия, по заданной программе управляет всеми узлами компьютера. Оно извлекает каждую последующую команду из регистра, узнает из нее, какую операцию нужно выполнить, и в какой последовательности. Это своеобразный дирижер, управляющий целым оркестром. А музыкальной композицией служит как раз программа.

Составные части

Арифметико-логическое устройство – это инструмент для вычислений, которое, следуя программам, выполняет операции, связанные с арифметикой и логикой.

Регистры являются внутренней памятью центрального процессора. Один регистр можно сравнить с черновиком, с помощью которого устройство производит расчеты и хранит их результаты. Каждый из регистров имеет свое собственно назначение.

Допустим, процессор должен сложить два каких-то числа. Для выполнения этой операции в первую очередь ему нужно взять из памяти первое слагаемое, потом - второе, сложить эти два значения, а сумму вновь переслать в оперативную память компьютера.

Ясно, что оба слагаемых и результат должны процессором где-то храниться. Для этой цели предназначена ячейка, входящая непосредственно в сам процессор, называемая аккумулятором или сумматором. Так как процессор предназначен для данных и их обработки, он должен понимать, из какой ячейки памяти нужно брать следующую команду. Это он узнает из другой своей внутренней ячейки, которая называется счетчиком. Команда, которая извлекается из оперативной памяти, размещается в еще одной ячейке – регистре команд. Из него результат выполненной команды можно перенести уже в оперативную память.

Виды регистров

Регистры бывают нескольких видов. Они отличаются друг от друга видом операций, которые выполняют. Самые важные регистры обладают собственными названиями:

  • Счетчик команд – это регистр, содержащий адрес следующей команды, которую нужно выполнить. Он служит для автоматического выбора программы из набора связанных ячеек памяти.
  • Сумматор – принимает участие при выполнении всех операций.
  • Регистр команд. В нем хранится команда на тот период времени, который нужен для выполнения.

Шина данных

Процессор компьютера предназначен для работы с информацией. Все его устройства постоянно ею между собой обмениваются. А делают они это при помощи элемента, который называется внутренняя шина данных. В современных центральных процессорах есть и другие части, но необходимым минимумом является вышеописанный набор устройств.

Машинный цикл и его схема

Данный процесс, как правило, состоит из следующих шагов:

  • Выбирается команда из ячейки, адрес которой сохранен в регистре-счетчике. Его содержимое при этом увеличивается на значение длины этой команды.
  • Далее она отправляется в устройство управления, попадая в его регистр команд.
  • Адресное поле, принадлежащее команде, расшифровывается устройством управления.
  • Последнее дает сигнал, и данные считываются из оперативной памяти, попадая уже в арифметико-логическое устройство.
  • Устройством управления расшифровывается код выполняемой операции и в арифметико-логическое устройство подается сигнал о выполнении этого действия над данными, которые в таком случае называются операндами.
  • Результат выполнения операции может сохраниться в самом центральном процессоре или же передается в память, в случае, когда имеется адрес, по которому должен находиться результат.
  • Все вышеперечисленные шаги выполняются до тех пор, пока не будет дан стоповый сигнал.

Характеристики

Итак, для чего предназначен процессор, ясно: для выполнения команд из заданной программы. Для этого он обладает следующими характеристиками:

  1. Тактовая частота. Центральный процессор тесно связан с генератором частоты тактов, которым вырабатываются импульсы. Они синхронизируют между собой работу всех элементов компьютера. Равняется эта характеристика числу тактов за одну секунду. Один такт – это отрезок времени, находящийся между первым импульсом и вторым. Измеряется тактовая частота в мегагерцах.
  2. Разрядность. Это максимальное значение, отвечающее за число разрядов двоичного кода, образованного и передаваемого процессором в одно и то же время. Эта характеристика определена разрядностью его регистров.
  3. Адресное пространство. К нему относится тот диапазон адресов, к которым обращается процессор, применяя адресный код.

Благодаря вышесказанному можно четко определиться, для чего предназначен процессор. Это мозг компьютера, без которого он совершенно ни к чему не пригоден. Разве только для украшения интерьера.

fb.ru

Что такое процессор и для чего он нужен, тактовая частота процессора

Процессор — это «мозг» компьютера. Процессором называется устройство, способное обрабатывать программный код и определяющее основные функции компьютера по обработке информации.

Процессор выполняет основную работу в компьютере. Процессоры конструктивно могут выполняться как в виде одной большой интегральной микросхемы — чипа, так и в виде нескольких микросхем, блоков электронных плат н устройств.

В настоящее время микропроцессоры и процессоры вмещают в себя миллионы транзисторов и других элементов электронной логики и представляют собой сложнейшие высокотехнологичные электронные устройства.

Персональный компьютер содержит в своем составе довольно много различных процессоров. Каждое устройство, будь то видеокарта, системная шина или еще что-либо, обслуживается своим собственным процессором или процессорами. Однако архитектуру и конструктивное исполнение персонального компьютера определяет процессор или процессоры, контролирующие и обслуживающие системную шину и оперативную намять, и, что более важно, выполняющие объектный код программ. Такие процессоры принято называть центральными или главными процессорами (Central Point. Unit — CPU). На основе архитектуры центральных процессоров строится архитектура материнских плат и проектируется архитектура и конструкция компьютера.

Компьютеры с процессорами, поддерживающими систему команд Intel х86 (фирм Intel, AMD, Cyrix, Transmeta), на которых может исполнять операционная система Microsoft Windows, называются Wintel-компьютерами (от Windows и Intel).

Тактовая частота процессора определяет минимальный квант времени, за который процессор выполняет некоторую условную элементарную операцию. Тактовые частоты измеряются в мегагерцах и определяют количественные характеристики производительности компьютерных систем в целом. Чем больше (выше) тактовая частота, тем быстрее работает центральный процессор.

Каждый микропроцессор имеет определенное число элементов памяти, называемых регистрами, арифметико-логическое устройство (АЛУ) и устройство управления.

Регистры используются для временного хранения выполняемой команды, адресов памяти, обрабатываемых данных и другой внутренней информации микропроцессора. В АЛУ производится арифметическая н логическая обработка данных.

Устройство управления вырабатывает необходимые управляющие сигналы для внутренней работы микропроцессора и связи его с другой аппаратурой через внешние шины микропроцессора.

shkolo.ru

Что такое процессор? Основные функции процессора.

Центра́льный проце́ссор (ЦП; CPU — англ. céntral prócessing únit, дословно — центральное вычислительное устройство) — исполнитель машинных инструкций, часть аппаратного обеспечения компьютера или программируемого логического контроллера, отвечающая за выполнение арифметических операций, заданных программами операционной системы, и координирующий работу всех устройств компьютера основные функции любого процессора следующие: выборка (чтение) выполняемых команд; ввод (чтение) данных из памяти или устройства ввода/вывода; вывод (запись) данных в память или в устройства ввода/вывода; обработка данных (операндов) , в том числе арифметические операции над ними; адресация памяти, то есть задание адреса памяти, с которым будет производиться обмен; обработка прерываний и режима прямого доступа.

ты что прикалываешься?

выполнять операции.

<a rel="nofollow" href="http://ru.wikipedia.org/wiki/Процессор" target="_blank">http://ru.wikipedia.org/wiki/Процессор</a>

эта очень нужная штука))

Центра&#769;льный проце&#769;ссор (ЦП; CPU — англ. c&#233;ntral pr&#243;cessing &#250;nit, дословно — центральное вычислительное устройство) — исполнитель машинных инструкций, часть аппаратного обеспечения компьютера или программируемого логического контроллера, отвечающая за выполнение арифметических операций, заданных программами операционной системы, и координирующий работу всех устройств компьютера. Современные ЦП, выполняемые в виде отдельных микросхем (чипов) , реализующих все особенности, присущие данного рода устройствам, называют микропроцессорами. С середины 1980-х последние практически вытеснили прочие виды ЦП, вследствие чего термин стал всё чаще и чаще восприниматься как обыкновенный синоним слова «микропроцессор» . Тем не менее, это не так: центральные процессорные устройства некоторых суперкомпьютеров даже сегодня представляют собой сложные комплексы больших (БИС) и сверхбольших (СБИС) интегральных схем. Изначально термин Центральное процессорное устройство описывал специализированный класс логических машин, предназначенных для выполнения сложных компьютерных программ. Вследствие довольно точного соответствия этого назначения функциям существовавших в то время компьютерных процессоров, он естественным образом был перенесён на сами компьютеры. Начало применения термина и его аббревиатуры по отношению к компьютерным системам было положено в 60-х годах XX века. Устройство, архитектура и реализация процессоров с тех пор неоднократно менялись, однако их основные исполняемые функции остались теми же, что и прежде. Ранние ЦП создавались в виде уникальных составных частей для уникальных, и даже единственных в своём роде, компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху бурного развития полупроводниковых элементов, мейнфреймов и миникомпьютеров, а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров. Стандартизация и миниатюризация процессоров привели к глубокому проникновению основанных на них цифровых устройств в повседневную жизнь человека. Современные процессоры можно найти не только в таких высокотехнологичных устройствах, как компьютеры, но и в автомобилях, калькуляторах, мобильных телефонах и даже в детских игрушках. Чаще всего они представлены микроконтроллерами, где помимо вычислительного устройства на кристалле расположены дополнительные компоненты (интерфейсы, порты ввода/вывода, таймеры, и др.) . Современные вычислительные возможности микроконтроллера сравнимы с процессорами персональных ЭВМ десятилетней давности, а чаще даже значительно превосходят их показатели.

Сердйе машины. Без него жизни нет!!!

википедия на что????

Центра́льный проце́ссор (ЦП; CPU — англ. céntral prócessing únit, дословно — центральное вычислительное устройство) — исполнитель машинных инструкций, часть аппаратного обеспечения компьютера или программируемого логического контроллера, отвечающая за выполнение арифметических операций, заданных программами операционной системы, и координирующий работу всех устройств компьютера. Современные ЦП, выполняемые в виде отдельных микросхем (чипов) , реализующих все особенности, присущие данного рода устройствам, называют микропроцессорами. С середины 1980-х последние практически вытеснили прочие виды ЦП, вследствие чего термин стал всё чаще и чаще восприниматься как обыкновенный синоним слова «микропроцессор» . Тем не менее, это не так: центральные процессорные устройства некоторых суперкомпьютеров даже сегодня представляют собой сложные комплексы больших (БИС) и сверхбольших (СБИС) интегральных схем. Изначально термин Центральное процессорное устройство описывал специализированный класс логических машин, предназначенных для выполнения сложных компьютерных программ. Вследствие довольно точного соответствия этого назначения функциям существовавших в то время компьютерных процессоров, он естественным образом был перенесён на сами компьютеры. Начало применения термина и его аббревиатуры по отношению к компьютерным системам было положено в 60-х годах XX века. Устройство, архитектура и реализация процессоров с тех пор неоднократно менялись, однако их основные исполняемые функции остались теми же, что и прежде. Ранние ЦП создавались в виде уникальных составных частей для уникальных, и даже единственных в своём роде, компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху бурного развития полупроводниковых элементов, мейнфреймов и миникомпьютеров, а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров. Стандартизация и миниатюризация процессоров привели к глубокому проникновению основанных на них цифровых устройств в повседневную жизнь человека. Современные процессоры можно найти не только в таких высокотехнологичных устройствах, как компьютеры, но и в автомобилях, калькуляторах, мобильных телефонах и даже в детских игрушках. Чаще всего они представлены микроконтроллерами, где помимо вычислительного устройства на кристалле расположены дополнительные компоненты (интерфейсы, порты ввода/вывода, таймеры, и др.) . Современные вычислительные возможности микроконтроллера сравнимы с процессорами персональных ЭВМ десятилетней давности, а чаще даже значительно превосходят их показатели.

touch.otvet.mail.ru

Зачем нужен процессор в компьютере или планшете

Приветствую всех, кто заинтересовался такой важной составляющей системного блока, как процессор. Позвольте для начала задать вам несколько вопросов. Занимаетесь ли вы профессиональным монтажом видео? А вы любите ультрасовременные игры, реалистичность в которых просто зашкаливает? Или хотите, чтобы ваш компьютер работал без тормозов, зависаний и выполнял все возложенные на него функции?

Тогда вам просто необходимо знать, что именно процессор ответственен за решение любых, даже самых сложных задач. В этой статье вы узнаете, зачем нужен процессор в компьютере, на что он способен и как правильно его подобрать исходя из своих потребностей.

Что такое процессор?

Процессор - это небольшая микросхема, которая располагается в специальном слоте на материнской плате. Через него ежесекундно проходят миллионы операций, совершаемых вами или установленными программами. Именно в процессоре сосредоточены все основные функции управления компьютером, он является своеобразным "мостом" между каждой составляющей системного блока. Без него невозможно запустить компьютер, как, например, завести автомобиль, у которого нет двигателя.Соответственно, чем мощнее чип, тем быстрее будут обрабатываться все команды и операции. Любые, даже самые ресурсоёмкие утилиты перестанут "тормозить", станут быстрее открываться. Как пример можно привести 3D-рендеринг видео. Эта операция очень сильно нагружает производительность процессора, поэтому, если тот слабенький по своим параметрам, процедура может затянуться на несколько часов (зависит от длительности видео и его качества).

Аналогично будут выглядеть попытки геймеров запустить свои любимые игры. А если это даже и получится, то они, скорее всего, дальше начального меню не продвинутся, поскольку всё будет страшнейшим образом зависать. Или, на игровом сленге, лагать.

Оптимальный выбор - насколько это сложно?

Сразу скажу - это не трудно, но достаточно кропотливо. Дело в том, что подбирая процессор для определённых задач нужно учесть несколько критериев, таких как:

  • тактовая частота - от этого параметра зависит количество обрабатываемых в секунду операций;
  • производительность - это скорость обработки операций;
  • разрядность - количество обрабатываемых бит (единицы информации). Сей критерий конкретизирует тактовую частоту;
  • кеш - подобие оперативной памяти, позволяющее уменьшить время доступа к настоящей оперативной памяти;
  • количество ядер - чем их больше, тем увереннее микросхема будет справляться даже с колоссальными нагрузками (и критическими тоже).

Простому обывателю, чей компьютер не занят сложнейшими вычислительными задачами и не регулирует работу мощнейших программ, достаточно выбрать процессор только по двум критериям - это количество ядер и их тактовая частота. Вот о них сейчас и поговорим по порядку.

Многоядерность - это многозадачность

Самые первые процессоры имели в своей архитектуре всего одно ядро. Ранее этого было достаточно, но стремительное развитие информационных технологий не оставило одноядерным микросхемам никаких шансов, и они постепенно растворяются в истории. Сейчас стоит покупать современный процессор как минимум с двумя ядрами, а то и больше. Благо производители трудятся в поте лица и постоянно совершенствуются в разработке новых типов процессоров.

Производителей, кстати, в мире всего два - это компании Intel и AMD. Каждая из них выпускает вполне достойные чипы, но продукция Intel славится больше. Чем это вызвано - непонятно, ведь AMD тоже создаёт неплохие и мощные микросхемы.

Частота не менее важна

Тактовая частота - постоянно растущий параметр. Каждое новое поколение чипов имеет улучшенные характеристики. Например, процессор AMD A10-5800K последнего поколения (выпуска 2016 года) имеет частоту аж в целых 4.2 ГГц. При этом у него 12 ядер. Впечатляет, правда? Если ещё и разгон включить, то можно сделать супермашину из своего компьютера, но такие нагрузки вам вряд ли необходимы.

Если вам такие мощности ни к чему, то можно присмотреться к любому двухъядерному чипу, чья тактовая частота начинается от 1.7 ГГц. Этих показателей вполне хватит для уверенной работы даже мощных утилит (графика, видео и пр.). А также такой чип подойдёт и для игр.

В ноутбуках, кстати, очень часто встраиваются процессоры, которые сразу имеют в своей архитектуре графическое ядро. Это удобно, так как экономит место в корпусе и позволяет сразу же обрабатывать всю графическую информацию напрямую.

Решение возможных проблем

Как и любая другая техническая примочка, процессор может иногда удивлять пользователей. Например, пользователь недоумевает, почему он греется, хотя нагрузки вроде нет серьёзной. Или компьютер попросту зависнет в самый неподходящий момент (а 99% зависаний происходят из-за того, что чип не успевает обработать большой поток информации).

Практически всегда выход из положения элементарный - термопаста. Она необходима для стабилизации температуры и охлаждения. В сочетании с кулером, разумеется. У неё есть свойство со временем подсыхать, поэтому с определённой периодичностью ее нужно заменять. Ничего сложного в снятии кулера и нанесения термопасты нет, но если у вас нет опыта в этом, то лучше довериться профессионалу.

А если вы не в курсе, как узнать, какой процессор на вашем компьютере, то я подскажу, это очень просто. Достаточно кликнуть правой кнопкой мышки по ярлыку "Мой компьютер", вызвав контекстное меню, а там перейти во вкладку "Свойства". Все, информация о вашем процессоре будет прямо в открывшемся окошке.

Искренне надеюсь, что вы нашли для себя что-то новое в этом материале. Не забывайте делиться им со своими друзьями в социальных сетях, может кто-то из них как раз не знает чего-то о процессорах.

А вы знаете, что в России тоже разрабатывают свои процессоры. Нет? Тогда посмотрите это видео.

Дорогой читатель! Вы посмотрели статью до конца. Получили вы ответ на свой вопрос? Напишите в комментариях пару слов.Если ответа не нашли, укажите что искали.

Рекомендовано Вам:

tvojkomp.ru