7 уровней модели OSI — физический, канальный, сетевой, транспортный, сеансовый, представления, прикладной. Данные на любом уровне модели сети
Канальный уровень модели OSI. Общие понятия.
Канальный уровень — уровень сетевой модели OSI, предназначенный для обмена данными между узлам находящимся в том же сегменте локальной сети, путем передачи специальных блоков данных, которые называются кадрами (frame). В процессе формирования кадров данные снабжаются служебной информацией (заголовком), необходимой для корректной доставки получателю, и, в соответствии с правилами доступа к среде передачи, отправляются на физический уровень. Таким образом канальный уровень обеспечивает создание, передачу и прием кадров данных.
Этот уровень обслуживает запросы сетевого уровня и использует сервис физического уровня для приема и передачи пакетов.
Кадры канального уровня не пересекают границ сетевого сегмента. Межсетевая маршрутизация и глобальная адресация это функция более высокого уровня, что позволяет протоколам канального уровня сосредоточится на локальной доставке и адресации.
В локальных сетях канальный уровень разделяется на два подуровня:
- уровень управления логическим каналом (logical link control, LLC).
- уровень доступа к среде (media access layer, MAC),
Процедура доступа к среде и является главной функцией МАС-уровня. В сетях Ethernet используется метод доступа к среде передачи данных, называемый методом коллективного доступа с опознаванием несущей и обнаружением коллизий (carrier sense multiple access with collision detection, CSMA/CD). Этот метод применяется исключительно в сетях с логической общей шиной (к которым относятся и радиосети, породившие этот метод).
Когда устройства пытаются использовать среду одновременно, возникают коллизии кадров. Протоколы канального уровня выявляют такие случаи и обеспечивают механизмы для уменьшения их количества или же их предотвращения.
Коллизия (англ. collision — ошибка наложения, столкновения) — в терминологии компьютерных и сетевых технологий, наложение двух и более кадров от станций, пытающихся передать кадр в один и тот же момент времени.
Все компьютеры такой сети имеют непосредственный доступ к общей шине, поэтому она может быть использована для передачи данных между любыми двумя узлами сети. Одновременно все компьютеры сети имеют возможность немедленно (с учетом задержки распространения сигнала по физической среде) получить данные, которые любой из компьютеров начал передавать в общую шину.
Чтобы получить возможность передавать кадр, станция должна убедиться, что разделяемая среда свободна. Это достигается прослушиванием несущей частоты (carrier-sense).
Если среда свободна, то узел имеет право начать передачу кадра. Все станции, подключенные к кабелю, могут распознать факт передачи кадра, и та станция, которая узнает собственный адрес в заголовках кадра, записывает его содержимое в свой внутренний буфер, обрабатывает полученные данные, передает их вверх по своему стеку, а затем посылает по кабелю кадр-ответ. Адрес станции источника содержится в исходном кадре, поэтому станция-получатель знает, кому нужно послать ответ. После окончания передачи кадра все узлы сети обязаны выдержать технологическую паузу. Эта пауза, называемая также межкадровым интервалом, нужна для приведения сетевых адаптеров в исходное состояние, а также для предотвращения монопольного захвата среды одной станцией. После окончания технологической паузы узлы имеют право начать передачу своего кадра, так как среда свободна.
При описанном подходе возможна ситуация, когда две станции одновременно пытаются передать кадр данных по общей среде. Механизм прослушивания среды и пауза между кадрами не гарантируют защиты от возникновения такой ситуации, когда две или более станции одновременно решают, что среда свободна, и начинают передавать свои кадры. Говорят, что при этом происходит коллизия (collision), так как содержимое обоих кадров сталкивается на общем кабеле и происходит искажение информации — методы кодирования, используемые в Ethernet, не позволяют выделять сигналы каждой станции из общего сигнала.
Коллизия — это нормальная ситуация в работе сетей Ethernet. Для возникновения коллизии не обязательно, чтобы несколько станций начали передачу абсолютно одновременно, такая ситуация маловероятна. Гораздо вероятней, что коллизия возникает из-за того, что один узел начинает передачу раньше другого, но до второго узла сигналы первого просто не успевают дойти к тому времени, когда второй узел решает начать передачу своего кадра. То есть коллизии — это следствие распределенного характера сети.
Заголовок кадра содержит аппаратные адреса отправителя и получателя, что позволяет определить, какое устройство отправило кадр и какое устройство должно получить и обработать его. В отличии от иерархических и маршрутизируемых адресов, аппаратные адреса одноуровневые. Это означает, что никакая часть адреса не может указывать на принадлежность к какой либо логической или физической группе.
Для успешной доставки одного адреса назначения явно недостаточно. Нужна дополнительная служебная информация – длина поля данных, тип сетевого протокола и др.
Формат кадра Ethernet
PreambleПреамбула | SFD | DA Адрес назначения | SA Адрес Источника | Type/LengthТип/Длина | DataДанные | FCSКонтрольная сумма |
7 байт | 1 байт | 6 байт | 6 байт | 2 байта | 46-1500 байт | 4 байта |
- Преамбула (Preamble). Состоит из 8 байтов. Первые семь содержат одну и ту же циклическую последовательность битов (10101010), которая хорошо подходит для синхронизации приемопередатчиков. Последний (Start-of-frame-delimiter, SFD), 1 байт (10101011), служит меткой начала информационной части кадра. Это поле не учитывается при определении длины кадра и не рассчитывается в контрольной сумме.
- МАС-адрес получателя (Destination Address, DA).
- МАС-адрес отправителя (Source Address, SA). Первый бит всегда равен нулю.
- Поле длины либо тип данных (Length/Type, L/T). Два байта, которые содержат явное указание длины (в байтах) поля данных в кадре или указывают на тип данных. Ниже, в описании LLC будет показано, что возможно простое автоматическое распознавание разных типов кадров.
- Данные (Data). Полезная нагрузка кадра, данные верхних уровней OSI. Может иметь длину от 0 до 1500 байт.
- Для корректного распознавания коллизий необходим кадр не менее чем из 64 байт. Если поле данных менее 46 байт, то кадр дополняется полем заполнения (Padding).
- Контрольная сумма (Frame Check Sequence, FCS). 4 байта, которые содержит контрольную сумму всех информационных полей кадра. Вычисление выполняется по алгоритму CRC-32 отправителем и добавляется в кадр. После приема кадра в буфер, приемник выполняет аналогичный расчет. В случае расхождения результата вычислений, предполагается ошибка при передаче, и кадр уничтожается.
Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит в начало и конец каждого кадра, чтобы отметить его, а также вычисляет контрольную сумму, суммируя все байты кадра определенным способом и добавляя контрольную сумму к кадру. Когда кадр приходит, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка.
Кадр приведенный выше является кадром MAС-подуровня, и в соответствии со стандартом 802.2 в его поле данных вкладывается кадр подуровня LLC с удаленными флагами начала и конца кадра. Данный подуровень обеспечивает единый, независимый от используемого метода доступа, интерфейс с верхним (сетевым) уровнем.
Служебный заголовок кадра LLC имеет три поля: точка входа в сервис назначения (Destination Service Access Point, DSAP), точка входа в сервис источника (Source Service Access Point, SSAP) и поле управления. Первые два поля могут использоваться для характеризации протоколов верхнего уровня, данные которых представлены в поле данных кадра LLC. Поле управления используется для реализации процедуры установления соединения на канальном уровне, но оно редко используется в протоколах локальных сетей. Результирующий кадр MAC/LLC изображен в левой части рисунка ниже:
PreambleПреамбула | SFD | DA Адрес назначения | SA Адрес Источника | Type/LengthТип/Длина | DSAP | SSAP | Поле управления | DataДанные | FCSКонтрольная сумма |
7 байт | 1 байт | 6 байт | 6 байт | 2 байта | 1 байт | 1 байт | 1 байт | 46-1497 байт | 4 байта |
В локальных сетях адресация узлов назначения и узлов источника производится на основе МАС-адресов, которые “прошиты” в ПЗУ сетевых интерфейсов.
MAC-адрес может быть записан в различной форме. Наиболее часто используется шестнадцатеричная, в которой пары байтов отделяются друг от друга символами “-” или “:”.
Старшие три байта представляют собой идентификатор производителя оборудования (Vendor codes или OUI – Organizational Unique Identifier), младшие – индивидуальный идентификатор устройства или номер интерфейса.
За уникальность последних несет ответственность производитель оборудования, их значение устанавливается на заводе и является уникальным для каждого выпущенного устройства.
С идентификаторами производителя дело обстоит сложнее. Существует специальная организация в составе IEEE, которая ведет список вендоров, выделяя каждому из них свой диапазон адресов.
Такой механизм существует для того, что бы физический адрес любого устройства был уникальным, и не возникло ситуации его случайного совпадения в одной локальной сети.
Нужно особо отметить, что на большинстве современных адаптеров можно программным путем установить любой адрес. А существуют еще и виртуальные (программные) интерфейсы, где адрес задается только программным путем. Это представляет определенную угрозу работоспособности локальной сети, и может быть причиной серьезных сбоев в работе сети.
www.oslogic.ru
7 уровней модели OSI — физический, канальный, сетевой, транспортный, сеансовый, представления, прикладной
Содержание:
Модель OSI
Эталонная модель OSI являет собой 7-уровневую сетевую иерархию созданную международной организацией по стандартам (ISO). Представленная модель на рис.1 имеет 2 различных модели:
- горизонтальная модель на основе протоколов, реализующую взаимодействие процессов и ПО на разных машинах
- вертикальную модель на основе услуг, реализуемых соседними уровнями друг другу на одной машине
В вертикальной — соседние уровни меняются информацией с помощью интерфейсов API. Горизонтальная модель требует общий протокол для обмена информацией на одном уровне.
Рисунок — 1
Модель OSI описывает только системные методы взаимодействия, реализуемые ОС, ПО и тд. Модель не включает методы взаимодействия конечных пользователей. В идеальных условиях приложения должны обращаться к верхнему уровню модели OSI, однако на практике многие протоколы и программы имеют методы обращения к нижним уровням.
Физический уровень
На физическом уровне данные представлены в виде электрических или оптических сигналов, соответствующие 1 и 0 бинарного потока. Параметры среды передачи определяются на физическом уровне:
- тип разъемов и кабелей
- разводка контактов в разъемах
- схема кодирования сигналов 0 и 1
Самые распространенные виды спецификаций на этом уровне:
На физическом уровне нельзя вникнуть в смысл данных, так как она представлена в виде битов.
Канальный уровень
На этом канале реализована транспортировка и прием кадров данных. Уровень реализует запросы сетевого уровня и использует физический уровень для приема и передачи. Спецификации IEEE 802.x делят этот уровень на два подуровня управление логическим каналом (LLC) и управление доступом к среде (MAC). Самые распространенные протоколы на этом уровне:
Также на этом уровне реализуется обнаружение и исправление ошибок при передаче. На канальном уровне пакет помещается в поле данных кадра — инкапсуляция. Обнаружение ошибок возможно с помощью разных методов. К примеру реализация фиксированных границ кадра, или контрольной суммой.
Сетевой уровень
На этом уровне происходит деление пользователей сети на группы. Здесь реализуется маршрутизация пакетов на основе MAC-адресов. Сетевой уровень реализует прозрачную передачу пакетов на транспортный уровень. На этом уровне стираются границы сетей разных технологий. Маршрутизаторы работают на этом уровне. Пример работы сетевого уровня показан на рис.2 Самые частые протоколы:
Рисунок — 2
Транспортный уровень
На этом уровне потоки информации делятся на пакеты для передачи их на сетевом уровне. Самые распространенные протоколы этого уровня:
- TCP — протокол управления передачей
- NCP
- SPX
- TP4
Сеансовый уровень
На этом уровне происходит организация сеансов обмена информацией между оконечными машинами. На этом уровне идет определение активной стороны и реализуется синхронизация сеанса. На практике многие протоколы других уровней включают функцию сеансового уровня.
Уровень представления
На этом уровне происходит обмен данными между ПО на разных ОС. На этом уровне реализовано преобразование информации (кодирование, сжатие и тд) для передачи потока информации на транспортный уровень. Протоколы уровня используются и те, что используют высшие уровни модели OSI.
Прикладной уровень
Прикладной уровень реализует доступ приложения в сеть. Уровень управляет переносом файлов и управление сетью. Используемые протоколы:
- FTP/TFTP — протокол передачи файлов
- X 400 — электронная почта
- Telnet
- smtp
- CMIP — управление информацией
- SNMP — управление сетью
- NFS — сетевая файловая система
- FTAM — метод доступа для переноса файлов
infoprotect.net
Сетевая модель OSI – 7 уровней эталонной модели взаимодействия компьютеров | Info-Comp.ru
Данный материал посвящен эталонной сетевой семиуровневой модели OSI. Здесь Вы найдете ответ на вопрос для чего системным администраторам необходимо понимать данную сетевую модель, будут рассмотрены все 7 уровней модели, а также Вы узнаете основы модели TCP/IP, которая и была построена на основе эталонной модели OSI.
Когда я начал увлекаться различными IT технологиями, стал работать в этой сфере, я, конечно же, не знал не о какой модели, даже не задумывался об этом, но мне более опытный специалист посоветовал изучить, точнее, просто понять эту модель, добавив что «если будешь понимать все принципы взаимодействия, то будет намного проще управлять, конфигурировать сеть и решать всевозможные сетевые и другие проблемы». Я его, конечно же, послушался и стал лопатить книги, Интернет и другие источники информации, одновременно с этим проверять на существующей сети, правда ли это все так на самом деле.
В современном мире развитие сетевой инфраструктуры достигло такого высокого уровня, что без построения, даже маленькой сети, предприятие (в т.ч. и маленькое) не сможет просто на всего нормально существовать, поэтому системные администраторы становятся, все более востребованы. А для качественного построения и конфигурирования любой сети, системный администратор должен понимать принципы эталонной модели OSI, как раз, для того чтобы Вы научились понимать взаимодействие сетевых приложений, да и вообще принципы сетевой передачи данных, я попытаюсь изложить этот материал доступно даже для начинающих админов.
Сетевая модель OSI (open systems interconnection basic reference model) – это абстрактная модель взаимодействия компьютеров, приложений и других устройств в сети. Если вкратце, суть данной модели состоит в том, что организация ISO (International Organization for Standardization) разработала стандарт работы сети, для того чтобы все смогли опираться на него, и происходило совместимость всех сетей и взаимодействие между ними. Один из самых популярных протоколов взаимодействия сети, который применяется во всем мире, это TCP/IP он и построен на базе эталонной модели.
Ну, давайте перейдем непосредственно к самим уровням этой модели, и для начала ознакомитесь с общей картиной этой модели в разрезе ее уровней.
Теперь поговорим поподробней о каждом уровне, принято описывать уровни эталонной модели сверху в низ, именно по этому пути, и происходит взаимодействие, на одном компьютере сверху вниз, а на компьютере где идет прием данных снизу вверх, т.е. данные проходят каждый уровень последовательно.
Описание уровней сетевой модели
Уровень приложений (7) (прикладной уровень) – это отправная и в то же время конечная точка данных, которые Вы хотите передать по сети. Этот уровень отвечает за взаимодействие приложений по сети, т.е. на этом уровне общаются приложения. Это самый верхний уровень и необходимо помнить это, при решении возникающих проблем.
На этом уровне работают такие протоколы как: HTTP, POP3, SMTP, FTP, TELNET и другие. Другими словами приложение 1 посылает запрос приложению 2 по средствам этих протоколов, и для того чтобы узнать, что приложение 1 послало запрос именно приложению 2, между ними должна быть связь, вот именно протокол и отвечает за эту связь.
Уровень представления (6) – этот уровень отвечает за кодирование данных, для того чтобы их потом можно было передать по сети и соответственно преобразует их обратно, для того чтобы приложение понимало эти данные. После этого уровня данные для других уровней становятся одинаковыми, т.е. без разницы, что это за данные, будь то документ word или сообщение электронной почты.
На этом уровне работают такие протоколы как: RDP, LPP, NDR и другие.
Сеансовый уровень (5) – отвечает за поддержание сеанса между передачей данных, т.е. продолжительность сеанса отличается, в зависимости от передаваемых данных, поэтому его необходимо поддерживать или прекращать.
На этом уровне работают следующие протоколы: ASP, L2TP, PPTP и другие.
Транспортный уровень (4) – отвечает за надежность передачи данных. Он также разбивает данные на сегменты и собирает их обратно, так как данные бывают разного размера. Существует два известных протокола этого уровня - это TCP и UDP. TCP протокол дает гарантию на то, что данные будут доставлены в полном объеме, а протокол UDP этого не гарантирует, именно поэтому их используют для разных целей.
Сетевой уровень (3) – он предназначен для определения пути, по которому должны пройти данные. На этом уровне работают маршрутизаторы. Также он отвечает за: трансляцию логических адресов и имён в физические, определение короткого маршрута, коммутацию и маршрутизацию, отслеживание неполадок в сети. Именно на этом уровне работает протокол IP и протоколы маршрутизации, например RIP, OSPF.
Канальный уровень (2) – он обеспечивает взаимодействие на физическом уровне, на этом уровне определяются MAC адреса сетевых устройств, также здесь ведется контроль ошибок и их исправление, т.е. посылает повторный запрос поврежденного кадра.
Физический уровень (1) – это уже непосредственно преобразование всех кадров в электрические импульсы и обратно. Другими словами физическая передача данных. На этом уровне работают концентраторы.
Вот так выглядит весь процесс передачи данных с точки зрения этой модели. Она является эталонной и стандартизированной и поэтому на ней основаны другие сетевые технологии и модели в частности модель TCP/IP.
Модель TCP IP
Модель TCP/IP немного отличается от модели OSI, если говорить конкретней в данной модели объединили некоторые уровни модели OSI и их здесь всего 4:
- Прикладной;
- Транспортный;
- Сетевой;
- Канальный.
На картинке представлено отличие двух моделей, а также еще раз показано на каких уровнях работают всем известные протоколы.
Говорить о сетевой модели OSI и конкретно про взаимодействие компьютеров в сети можно долго и в рамках одной статьи это не уместить, да и будет немного не понятно, поэтому здесь я попытался представить как бы основу этой модели и описание всех уровней. Главное понимать, что все это действительно так и файл, который Вы отправили по сети проходит просто «огромный» путь, перед тем как попасть к конечному пользователю, но это происходит на столько быстро, что Вы этого не замечаете, во многом благодаря развитым сетевым технологиям.
Надеюсь все это, Вам поможет понимать взаимодействие сетей.
info-comp.ru
Сетевой уровень модели OSI. Общие понятия.
Основная задача сетевого уровня модели OSI (или уровня сетевого взаимодействия протокола TCP/IP) — доставка пакетов от одного узла-отправителя к узлу-получателю не зависимо от того к какой локальной сети принадлежат узлы. Если на канальном уровне передача информации между узлами сети возможна только в пределах одной логической сети, то сетевой уровень определяет правила доставки данных между логическими сетями, формирование логических адресов сетевых устройств, определение, выбор и поддержание маршрутной информации.
Если на канальном уровне адресация узлов осуществлялась при помощи физического МАС-адреса сетевого устройства, то на сетевом уровне появляются логические адреса – IP адреса сетевого устройства (интерфейса). IP-адреса интерфейсов одной IP-сети имеют общую часть, которая называется адресом или номером IP-сети и специфическую для каждого интерфейса часть, называемую адресом, или номером, данного интерфейса в данной IP-сети.
Соответственно, IP-сетью называется множество компьютеров (IP-интерфейсов), часто, но не всегда подсоединенных к одному физическому каналу связи, способных пересылать IP-дейтаграммы друг другу непосредственно (то есть без ретрансляции через промежуточные компьютеры, считая, что маршрутизатор, в принципе то-же является компьютером).
IP-адрес обычно записывается в форме 4-х трехразрядных десятичных чисел, называемых октетами, разделенных точкой – например 192.168.100.100. Каждое из этих десятичных чисел соответствует одному байту двоичного представления адреса.
Так как IP-адрес содержит в себе как адрес узла (точнее, интерфейса, так как в общем случай узел может иметь более одного интерфейса – например компьютер с двумя сетевыми платами) так и адрес сети, то необходим механизм для “вычленения” из IP-адреса интерфейса адреса сети, к которой принадлежит интерфейс и номера интерфейса в данной сети.
Для этого служит маска сети. Маска сети используется для определения того, какие биты являются частью номера сети, а какие – частью идентификатора хоста (для этого применяется логическая операция конъюнкции – “И”).
Таким образом адресное пространство любой сети состоит из:
- Адреса сети – это адрес который используется для организации маршрутизации между несколькими сетями. При получении IP-адреса хоста маршрутизатор накладывает на него маску и определяет адрес сети, затем по этому адресу определяется адрес шлюза на который нужно отправить пакет.
- Адреса хостов в сети – это набор IP-адресов, которые могут быть выданы хостам. Чтобы подсчитать количество адресов, нужно от общего количества адресов сети отнять два адреса: 1 – адрес самой сети и 2 – широковещательный адрес. При обмене пакетами между хостами в одной сети маршрутизатор и шлюз не нужны.
- Широковещательный адрес (Broadcast) – это адрес который не присвоен ни одному хосту в сети. Данный адрес используется для отправки широковещательных пакетов, которые предназначены каждому хосту сети.
На сетевом уровне функционируют протоколы: IP, IPv6, ICMP, IGMP, IPX, NWLink, NetBEUI, DDP, IPSec, ARP, RARP, DHCP, BootP, SKIP, RIP
www.oslogic.ru
Модели OSI - пособие для начинающих — asp24.ru
Современный мир ИТ - огромная ветвящаяся сложная для понимания структура. Чтобы упростить понимание и улучшить отладку ещё на этапе проектирования протоколов и систем была использована архитектура модульности. Нам гораздо проще выяснить, что проблема в видеочипе, когда видеокарта идет отдельным от остального оборудования устройством. Или заметить проблему в отдельном участке сети, чем перелопачивать всю сеть целиком.
Отдельно взятый пласт ИТ - сеть - тоже построена модульно. Модель функционирования сети назывется сетевая модель базовой эталонной модели взаимодействия открытых систем ISO/OSI. Кратко - модель OSI.
Модель OSI состоит из 7 уровней. Каждый уровень абстрагирован от других и ничего не знает о их существовании. Модель OSI можно сравнить с устройством автомобиля: двигатель выполняет свою работу, создавая крутящий момент и отдавая его коробке передач. Двигателю абсолютно без разницы что дальше будет происходить с этим крутящим моментом. Будет он крутить колесо, гусеницу или пропеллер. Точно так же как и колесу нет никакого дела откуда к нему пришел этот крутящий момент - от двигателя или рукоятки, которую крутит механик.
Здесь необходимо добавить понятие полезной нагрузки. Каждый уровень несет в себе какое-то количество информации. Часть этой информации является служебной для этого уровня, например, адрес. IP-адрес сайта не несет для нас никакой полезной информации. Нам важны только котики, которых нам показывает сайт. Так вот эта полезная нагрузка переносится в той части уровня, который называется protocol data unit (PDU).
Уровни Модели OSI
Рассмотрим каждый уровень Модели OSI подробнее.
1 уровень. Физический (physical). Единицей нагрузки (PDU) здесь является бит. Кроме единиц и нулей физический уровень не знает ничего. На этом уровне работают провода, патч панели, сетевые концентраторы (хабы, которые сейчас уже сложно найти в привычных нам сетях), сетевые адаптеры. Именно сетевые адаптеры и ничего более из компьютера. Сам сетевой адаптер принимает последовательность бит и передает её дальше.
2 уровень. Канальный (data link). PDU - кадр (frame). На этом уровне появляется адресация. Адресом является MAC адрес. Канальный уровень ответственен за доставку кадров адресату и их целостность. В привычных нам сетях на канальном уровне работает протокол ARP. Адресация второго уровня работает только в пределах одного сетевого сегмента и ничего не знает о маршрутизации - этим занимается вышестоящий уровень. Соответственно, устройства, работающие на L2 - коммутаторы, мосты и драйвер сетевого адаптера.
3 уровень. Сетевой (network). PDU пакет (packet). Наиболее распространенным протоколом (дальше не буду говорить про “наиболее распространенный” - статья для новичков и с экзотикой они, как правило, не сталкиваются) тут является IP. Адресация происходит по IP-адресам, которые состоят из 32 битов. Протокол маршрутизируемый, то есть пакет способен попасть в любую часть сети через какое-то количество маршрутизаторов. На L3 работают маршрутизаторы.
4 уровень. Транспортный (transport). PDU сегмент (segment)/датаграмма (datagram). На этом уровне появляются понятия портов. Тут трудятся TCP и UDP. Протоколы этого уровня отвечают за прямую связь между приложениями и за надежность доставки информации. Например, TCP умеет запрашивать повтор передачи данных в случае, если данные приняты неверно или не все. Так же TCP может менять скорость передачи данных, если сторона приема не успевает принять всё (TCP Window Size).
Следующие уровни “правильно” реализованы лишь в RFC. На практике же, протоколы описанные на следующих уровнях работают одновременно на нескольких уровнях модели OSI, поэтому нет четкого разделения на сеансовый и представительский уровни. В связи с этим в настоящее время основным используемым стеком является TCP/IP, о котором поговорим чуть ниже.
5 уровень. Сеансовый (session). PDU данные (data). Управляет сеансом связи, обменом информации, правами. Протоколы - L2TP, PPTP.
6 уровень. Представительский (presentation). PDU данные (data). Преставление и шифрование данных. JPEG, ASCII, MPEG.
7 уровень. Прикладной (application). PDU данные (data). Самый многочисленный и разнообразный уровень. На нем выполняются все высокоуровненвые протоколы. Такие как POP, SMTP, RDP, HTTP и т.д. Протоколы здесь не должны задумываться о маршрутизации или гарантии доставки информации - этим занимаются нижестоящие уровни. На 7 уровне необходима лишь реализации конкретных действий, например получение html-кода или email-сообщения конкретному адресату.
Заключение
Модульность модели OSI позволяет проводить быстрое нахождение проблемных мест. Ведь если нет пинга (3-4 уровни) до сайта, нет смысла копаться в вышележащих слоях (TCP-HTTP), когда не отображается сайт. Абстрагировавшись от других уровней проще найти ошибку в проблемной части. По аналогии с автомобилем - мы ведь не проверяем свечи, когда проткнули колесо.
Модель OSI является эталонной моделью - эдаким сферическим конем в вакууме. Разработка её велась очень долго. Параллельно с ней разрабатывался стек протоколов TCP/IP, акивно применяемый в сетях в настоящее время. Соответственно, можно провести аналогию между TCP/IP и OSI.
Источник: https://lanmarket.ua/stats/modeli-OSI---posobie-dlya-nachinayushchih
asp24.ru
Многоуровневые модели – протокольная модель TCP/IP и справочная модель OSI
Доброго времени суток, уважаемые читатели блога okITgo.ru! Тема сегодняшней статьи – использование многоуровеных моделей, которые помогают проектировать сложные многофункциональные сети, включающие множество сетевых устройств самых разных производителей. Отдельные части этих сетей, предоставляющих массу возможностей для коммуникации миллионам людей, могут проектироваться независимо и работать совместно, при этом совершенно незаметно для этих самых людей или конечных пользователей, которые, может быть, и не догадываются о сложности устройства информационных сетей и Интернета, в частности.
В посте рассказано о преимуществах использования многоуровневых моделей. Вы узнаете, чем отличаются протокольные модели (например, модель TCP/IP) и справочные модели, наиболее известным примером которых является эталонная модель OSI. Также в контексте использования многоуровневых моделей описан процесс коммуникации, включающий процесс отправки и процесс получения сообщения, и приведено сравнение модели OSI с моделью TCP/IP.
Преимущества Использования Многоуровневых Моделей
Чтобы представить взаимодействие между различными протоколами, принято использовать многоуровневые модели. Многоуровневая модель изображает работу протоколов, происходящую внутри каждого уровня, а также взаимодействие с уровнями выше и ниже.
Есть ряд преимуществ в использовании многоуровневой модели для описания сетевых протоколов и операций. Использование многоуровневой модели:
- Содействует в проектировании протоколов, поскольку протоколы, которые работают на специфическом уровне, имеют вполне определенную информацию, с которой им приходится иметь дело, а также определенный интерфейс к слоям выше и ниже.
- Стимулирует конкуренцию, так как продукты от разных производителей могут работать совместно.
- Препятствует изменениям технологии или возможностей одного слоя воздействовать на другие слои выше и ниже его.
- Обеспечивает общий язык для описания сетевых функций и возможностей.
Протокольные и Справочные Модели
Существует два основных типа сетевых моделей: протокольные модели и справочные модели.
Протокольная модель представляет собой модель, которая близко соответствует структуре конкретного набора протоколов. Иерархическое множество связанных протоколов в наборе представляет как правило всю функциональность, требуемую для взаимодействия социальной сети с сетью данных. Модель TCP/IP является протокольной моделью, поскольку она описываеи функции, которые происходят на каждом уровне протоколов внутри набора (стека) TCP/IP.
Справочная модель предоставляет общую справочную информацию (образец или эталон) для поддержки согласованности внутри всех типов сетевых протоколов и служб. Справочная модель не является спецификацией, готовой для претворения в жизнь, и не обеспечивает удовлетворительный уровень детализации для точного определения сервисов сетевой архитектуры. Основная цель справочной модели – добиться более ясного понимания функций и вовлеченных в работу процессов.
Модель Взаимосвязи Открытых Систем (англ. Open Systems Interconnection или OSI) является самой широко известной сетевой справочной моделью. Она используется при проектировании сетей данных, спецификаций работы и методов поиска неисправностей и решения проблем.
Хотя модели TCP/IP и OSI являются основными используемыми моделями, когда мы говорим о сетевой функциональности, проектировщики сетевых протоколов, служб и устройств могут создавать свои собственные модели для представления их продуктов. В конечном счете, проектировщикам приходится считаться с индустриальными стандартами, соотнося свой продукт или сервис либо с моделью OSI, либо с моделью TCP/IP, или же с ими обоими.
Модель TCP/IP
Первая многоуровневая модель для сетевых коммуникаций была создана в ранних 1970-х и называлась моделью Интернета. Она определяла четыре категории или функции, которые должны происходить, чтобы коммуникации были успешными. Архитектура набора протоколов TCP/IP следует структуре этой модели. По этой причине модель Интернета обычно называют моделью TCP/IP.
Большинство протокольных моделей описывают специфический для конкретного производителя стек протоколов. Однако, поскольку модель TCP/IP является открытым стандартом, одна компания не может контролировать определение модели. Определения стандарта и протоколов TCP/IP обсуждаются на общественном форуме и определены в ряде общедоступных документов. Эти документы называются RFC. Они содержат как формальную спецификацию протоколов информационных коммуникаций, так и ресурсы, описывающие использование этих протоколов.
Документы RFC также содержат технические и организационные документы, связанные с Интернетом, включая технические спецификации и нормообразующие документы, выпускаемые Целевой Группой Инженерной Поддержки Интернета (англ. Internet Engineering Task Force или IETF).
Процесс Коммуникации
Модель TCP/IP описывает функциональность протоколов, составляющих набор протоколов TCP/IP. Эти протоколы, которые выполняются как на отправляющем, так и на принимающим хостах, взаимодействуют для обеспечения доставки сообщений от одного конца к другому по сети.
Полный процесс коммуникации включает следующие шаги:
1. Создание данных на уровне Приложений конечного устройства, порождающего сообщение, или источника
2. Сегментация и инкапсуляция данных в процессе их спуска вниз по стеку протоколов на конечном устройстве – источнике
3. Генерация (передача) данных по соединению на уровне Сетевого Доступа стека
4. Транспортировка данных по объединенной сети, состоящей из соединений и различных промежуточных устройств
5. Прием данных на уровне Сетевого Доступа конечного устройства назначения
6. Декапсуляция и пересборка данных в процессе их подъема по стеку на устройстве назначения
7. Передача этих данных приложению назначения на уровне Приложений конечного устройства назначения
Единицы Данных Протокола и Инкапсуляция
В то время, как к данные приложения спускаются вниз по стеку протоколов, на этом пути различные протоколы добавляют информацию на каждом уровне стека, делая возможной передачу данных по сети. Этот процесс принято называть инкапсуляцией.
Форма, которую принимает фрагмент данных на каждом уровне, называется Единицей Данных Протокола. Во время инкапсуляции каждый последующий уровень инкапсулирует PDU, который он получает от уровня выше, в соответствии с используемым протоколом. На каждом этапе процесса PDU имеет различные названия, отражающие его новую форму. Хотя и не существует универсального соглашения об именовании единиц PDU, можно их называть, например, в соответствии с протоколами набора TCP/IP.
- Данные – Общий термин для PDU, используемый на Уровне Приложений
- Сегмент – PDU Транспортного Уровня
- Пакет – PDU Сетевого Уровня
- Фрейм – PDU Уровня Сетевого Доступа
- Биты – Единицы PDU, используемые при физической передаче данных через средство соединения (кабель, оптоволокно, радиоволны и т.п.)
Процесс Отправки и Получения
При отправке сообщений по сети, стек протоколов хоста работает с верху вниз. В примере веб сервера мы можем использовать модель TCP/IP для иллюстрации процесса отправки HTML страницы клиенту.
Протокол уровня Приложений, HTTP, начинает процесс доставки, форматируя данные HTML страницы для Транспортного уровня. Здесь данные приложения разбиваются на TCP сегменты. Каждому TCP сегменту присваивается подпись, называемая заголовком, которая содержит информацию о том, какой процесс на компьютере назначения должен получить сообщение. Также он содержит информацию, позволяющую процессу назначения заново собрать данные обратно к их исходному формату.
Транспортный уровень инкапсулирует HTML данные веб страницы в сегмент и отправляет его на Интернет уровень, где используется протокол IP. Здесь TCP сегмент целиком инкапсулируется внутри IP пакета, который добавляет другую подпись, называемую IP заголовком. IP заголовок содержит IP адреса хостов источника и назначения, а также информацию, необходимую для доставки пакета к своему соответствующему процессу назначения.
Далее IP пакет посылается к протоколу Ethernet уровня Сетевого Доступа, где он инкапсулируется между заголовком фрейма и трейлером. Каждый заголовок фрейма содержит физический адрес источника и назначения. Физический адрес уникальным образом идентифицирует устройства в локальной сети. Трейлер содержит информацию проверки ошибок. Наконец биты кодируются NIC адаптером сервера для передачи через Ethernet соединение.
Этот процесс происходит в обратном порядке на получающем хосте. В процессе получения данные декапсулируются при перемещении вверх по стеку, направляясь к своей финальной цели – приложению конечного устройства.
Модель OSI
- Уровень Приложений (Прикладной уровень) предоставляет средства для сквозной связности (возможности к соединению) между отдельными людьми в социальной сети посредством информационных сетей
- Уровень Представления обеспечивает общее представление данных, передаваемых между службами Прикладного уровня
- Уровень Сеанса (Сессионный уровень) предоставляет службы для уровня Представления, чтобы организовать их диалог и управлять обменом данных
- Транспортный уровень определяет службы для сегментации, передачи и повторной сборки данных для отдельных коммуникаций между конечными устройствами
- Сетевой уровень обеспечивает службы для обмена отдельными кусками данных по сети между определенными конечными устройствами
- Протоколы Канального уровня (слоя Канала Данных) описывают методы для обмена фреймами данных между устройствами в пределах одного общего средства связи
- Протоколы Физического уровня описывают механические, электрические, функциональные и процедурные средства для активации, обслуживания и деактивации физических соединений для передачи битов к и от сетевого устройства
Изначально модель OSI была спроектирована Интернациональной Организацией по Стандартизации (англ. International Organization for Standardization или сокр. ISO), чтобы обеспечить структуру, на основе которой можно было бы строить набор протоколов открытых систем. Видение было таким, что это множество протоколов будет использоваться для разработки интернациональной сети, которая не будет зависеть от частных систем.
Но, к сожалению, скорость, с которой адаптировался Интернет, основанный на TCP/IP, и темп его распространения, привели к тому, что разработка Набора Протоколов OSI и его принятие к практическому использованию просто отстали. Хотя несколько протоколов, разработанных с использованием спецификаций OSI, на настоящий момент широко используются, так что семиуровневая модель OSI сделала значительный вклад в разработку других протоколов и продуктов для всех типов новых сетей.
Как справочная модель, модель OSI предоставляет исчерпывающий список функций и служб, которые могут происходить на каждом уровне. Также она описывает взаимодействие каждого уровня с уровнями, сразу следующими за ним (уровень стека ниже) и перед ним (уровень стека выше).
Заметьте, что на уровни модели TCP/IP ссылаются только по имени, тогда как на семь уровней модели OSI чаще ссылаются по номеру, а не по имени.
Сравнение Модели OSI с Моделью TCP/IP
Протоколы, составляющие набор TCP/IP, можно описать в терминах справочной модели OSI. В модели OSI уровень Сетевого Доступа и уровень Приложений модели TCP/IP разделяются еще на несколько уровней, чтобы описать отдельные функции, которые происходят на этих уровнях.
На Уровне Сетевого Доступа набор протоколов TCP/IP не указывает, какие протоколы использовать при передаче через физическое соединение; он только описывает переход от Сетевого Уровня к физическим сетевым протоколам. Уровни OSI 1 и 2 обсуждают необходимые процедуры для доступа к соединению и физические средства для отправки данных по сети.
Основные параллели между двумя сетевыми моделями проходят на Уровнях 3 и 4 модели OSI. Уровень 3 Модели OSI, Сетевой уровень, едва ли не повсюду используется для обсуждения и документирования ряда процессов, которые происходят во всех сетях данных для адресации и маршрутизации сообщений по сети. Интенет Протокол является протоколом набора TCP/IP, который включает функциональность, описанную на Уровне 3.
Уровень 4, Транспортный уровень модели OSI, часто используется для описания главных служб или функций, которые управляют отдельными диалогами между хостами источника и назначения. Эти функции включают подтверждение (уведомление о получении), восстановление после ошибок и упорядочение. На этом уровне протоколы TCP/IP и UDP обеспечивают необходимую функциональность.
Уровень Приложений TCP/IP включает ряд протоколов, которые обеспечивают специфическую функциональность множеству приложений конечного пользователя. Уровни 5, 6 и 7 модели OSI используются как справочные разработчиками ПО приложений и производителями, чтобы выпускать продукты, требующие доступа к сетям для осуществления коммуникаций.
Удачи Вам и до новых встреч на страницах сайта okITgo.ru.
okitgo.ru
Какой метод можно использовать на двух компьютерах, чтобы убедиться, что пакеты не отбрасываются, потому что слишком много данных передается слишком быстро?
· инкапсуляция
· контроль потока
· способ доступа
· Время отклика
Какой протокол отвечает за регулирование размера и скорости http-сообщения, которыми обмениваются сервер и клиент?
· Протокол http
· АРП
· ПТС
· Протокол DHCP
Пользователь просматривает HTML-документ, размещенный на веб-сервере. Какой протокол сегментов сообщения и управляет сегментов в индивидуальной беседе между веб-сервером и веб-клиентом?
· Протокол DHCP
· ПТС
· Протокол http
· АРП
5. Веб-клиент отправляет запрос на веб-страницу веб-серверу. С точки зрения клиента, каков правильный порядок стека протоколов, который используется для подготовки запроса на передачу?
· Протокол http, протокол IP, протокол TCP, Ethernet и
· Протокол http, протокол TCP, IP и Ethernet с
· Локальные сети, протокол TCP, протокол IP, протокол http
· Локальных сетей, протокол IP, протокол TCP, протокол http
Какие проприетарные протоколы?
· протоколы, разработанные частными организациями для работы на любом оборудовании поставщика
· протоколы, которые могут свободно использоваться любой организацией или поставщиком
· протоколы, разработанные организациями, которые имеют контроль над их определения и операции
· набор протоколов, известных как TCP/IP протокола люкс
Стандарт IEEE позволяет беспроводной сетевой карты для подключения к беспроводной точке доступа, которая изготовлена другим производителем?
· 802.1
· 802.11
· 802.3
· 802.2
В чем преимущество сетевых устройств с использованием открытых стандартных протоколов?
· Сетевые коммуникации сводится к передаче данных между устройствами от того же производителя.
· Хост-клиент и сервер под управлением различных операционных систем могут успешно обмениваться данными.
· Доступ в интернет может осуществляться одним провайдером на каждом рынке.
· Конкуренция и инновации ограничиваются отдельные виды продукции.
Какова функция уровня 4 модели OSI?
· чтобы указать Тип пакета, используемый коммуникаций
· чтобы применить кадрирование информация в пакете, на основе прилагаемого СМИ
· для представления данных для пользователя, в том числе кодирования и диалогового управления
· для описания упорядоченной и надежной доставки данных между источником и получателем
Какое утверждение верно о TCP/IP и модели OSI и?
· Транспортный уровень TCP/IP и OSI уровня 4 предоставляют подобные услуги и функции.
· Слой сети TCP/IP имеет доступ к функции, аналогичные функциям сетевого уровня OSI.
· Слой оси 7 и прикладного уровня ТСР/IP обеспечивают одинаковые функции.
· Первых трех уровней модели OSI в целом опишите услуги, которые предоставляются на уровне TCP/IP интернет.
В чем преимущество использования многоуровневой модели сетевого взаимодействия?
· развитие конкуренции среди производителей устройств и программного обеспечения путем обеспечения совместимости своих продуктов
· расширение сети передачи данных путем определения целевых показателей для каждого слоя
· избежать возможных проблем с совместимостью с помощью общего набора разработке инструментов
· упрощая разработку протокола ограничить каждого слоя одна функция
Каков общий термин, который используется, чтобы описать набор данных на любом уровне модели сетей?
· кадр
· пакет
· блок данных протокола
· сегмент
Какой формат БРП используется при битов, полученных из сети среднего на сетевую карту хоста?
· файл
· кадр
· пакет
· сегмент
На каком уровне модели OSI будет логический адрес инкапсулироваться?
· физический уровень
· уровень канала передачи данных
· сетевой уровень
· транспортный уровень
Какое утверждение точно описывает процесс инкапсуляции протоколов TCP/IP, когда компьютер отправляет данные в сеть?
· Данные передаются из интернета слоя к слою доступа к сети.
· Пакеты отправляются из слоя доступа к сети на транспортном уровне.
· Сегментов передаются от транспортного уровня до уровня интернета.
· Кадры передаются от слоя доступа к сети Интернет слое.
Какое утверждение описывает функцию протокол разрешения адресов?
· АРП используется, чтобы обнаружить IP-адрес любого узла в другой сети.
· АРП используется, чтобы обнаружить IP-адрес любого узла в локальной сети.
· АРП используется для определения MAC-адрес любого узла в другой сети.
· АРП используется для определения MAC-адрес любого узла в локальной сети.
cyberpedia.su