3.1 Семиуровневая модель взаимодействия открытых систем osi/iso. Osi iso модель


Модель OSI / ISO — Oh, MSBRO !

Эталонная модель OSI , иногда называемая стеком OSI представляет собой 7-уровневую сетевую иерархию, разработанную Международной организацией по стандартам (International Standardization Organization — ISO).

Эта модель содержит в себе по сути 2 различных модели:— горизонтальную модель на базе протоколов, обеспечивающую механизм взаимодействия программ и процессов на различных машинах;— вертикальную модель на основе услуг, обеспечиваемых соседними уровнями друг другу на одной машине.

В горизонтальной модели двум программам требуется общий протокол для обмена данными. В вертикальной — соседние уровни обмениваются данными с использованием интерфейсов API.Модель OSI определяет различные уровни взаимодействия систем, дает им стандартные имена и указывает, какие функции должен выполнять каждый уровень. В модели OSI( Open System Interconnection, OSI ) средства взаимодействия делятся на семь уровней: прикладной, представительный, сеансовый, транспортный, сетевой, канальный и физический. Каждый уровень имеет дело с одним определенным аспектом взаимодействия сетевых устройств.

Физический уровеньФизический уровень имеет дело с передачей битов по физическим линиям связи  с такими характеристиками, как полоса пропускания, помехозащищенность, волновое сопротивление и др. На этом же уровне определяются характеристики электрических сигналов, передающих дискретную информацию (крутизна фронтов импульсов, уровни напряжения или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов). Кроме этого, здесь стандартизируются типы разъемов и назначение каждого контакта.

Функции физического уровня реализуются во всех устройствах, подключенных к сети (сетевым адаптером или последовательным портом) и заключаются в обеспечении передачи последовательности битов между любой парой узлов. Для выполнения этой функции на каждой стороне канала связи находится  модуль физического интерфейса (модем), функция которого состоит в преобразовании входящих битов, поступающих от следующего более высокого уровня (т.е. канального уровня), в сигналы, предназначенные для передачи по каналу, и на приемном конце в обратном преобразовании сигналов в биты.Канальный уровеньОдной из задач канального уровня является проверка доступности среды передачи. Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами(frames). Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит в начало и конец каждого кадра для его выделения, а также вычисляет контрольную сумму. Когда кадр приходит по сети, получатель снова вычисляет контрольную сумму полученных данных и сравнивает с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается, иначе фиксируется ошибка. Канальный уровень может не только обнаруживать ошибки, но и исправлять их за счет повторной передачи поврежденных кадров. Функция исправления ошибок не является обязательной для канального уровня, поэтому в некоторых протоколах этого уровня она отсутствует. Отвечает за физическую адресацию. В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов. В целом канальный уровень представляет собой весьма мощный и законченный набор функций по пересылке сообщений между узлами сети.Сетевой уровеньСетевой уровень (Network layer) служит для образования единой транспортной системы, объединяющей несколько сетей. Сети соединяются между собой специальными устройствами, называемыми маршрутизаторами. Чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач между сетями (хопов), каждый раз выбирая подходящий маршрут. Маршрут представляет собой последовательность маршрутизаторов, через которые проходит пакет.

Проблема выбора наилучшего пути называется маршрутизацией, и ее решение является одной из главных задач сетевого уровня.

Сообщения сетевого уровня принято называть пакетами. При организации доставки пакетов на сетевом уровне используется понятие «номер сети». В этом случае адрес получателя состоит из старшей части — номера сети и младшей — номера узла в этой сети.

На сетевом уровне определяются два вида протоколов.

Первый вид — сетевые протоколы управляют движением пакетов через сеть.

Второй вид протоколов — протоколы маршрутизации. С помощью этих прото¬колов маршрутизаторы собирают информацию о топологии межсетевых соединений.

Третий вид – протоколы разрешения адресов(ARP).

Протоколы сетевого уровня реализуются программными модулями операционной системы, а также программными и аппаратными средствами маршрутизаторов. (IP, IPX, RIP, ICMP)

Транспортный уровеньОбеспечивает передачу данных с той степенью надежности, которая требуется. Сообщение разбивается на пакеты на передающем конце, а на приемном конце пакеты собираются в сообщения.

Могут мультиплексироваться несколько низкоскоростных сеансов, имеющих один и тот же источник и пункт назначения, в один сеанс сетевого уровня. Поскольку подсеть связи в этом случае обслуживает только один сеанс, количество сеансов в подсети и соответствующая управляющая информация уменьшаются. До некоторой степени аналогичным образом на транспортном уровне один высокоскоростной канал может расщепляться на несколько сеансов сетевого уровня.

Обеспечение надежной сквозной связи для тех сеансов, которым это необходимо. Соединяемые сети часто имеют несовместимые сетевые уровни, и поэтому требуется, чтобы на транспортный уровень в шлюзе поступали пакеты от сетевого уровня одной сети и пакетам  придавалась такая форма, которая принята в другой сети. Если сети имеют различные максимальные размеры пакетов, то на транспортном уровне должны иногда разбиваться длинные пакеты на два или большее число пакетов меньшего размера.

Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протокола¬ми через общий транспортный протокол, и главное — способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.Протоколы реализуются программными средствами конечных узлов в сети — компонентами их сетевых операционных систем. (TCP, UDP, SPX)Сеансовый уровеньСеансовый уровень обеспечивает управление взаимодействием: фиксирует, какая из сторон является активной в настоящей момент, предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, а не начинать все с начала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется в виде отдельных протоколов, хотя функции этого уровня часто объединяют с функциями прикладного уровня и реализуют в одном протоколе.Одна из функций сеансового уровня подобна справочной службе телефонных сетей (если пользователь хочет воспользоваться предоставляемым сетью видом обслуживания, но не знает, куда надо обратиться, чтобы получить к нему доступ, то с этого уровня на транспортный уровень передается информация, необходимая для установления сеанса).Сеансовый уровень также связан с правами доступа при инициировании сеансов. По существу, на сеансовом уровне осуществляется управление взаимодействием между двумя конечными точками при установлении сеанса.Представительный уровеньПредставительный уровень имеет дело с формой представления передаваемой по сети информации, не меняя при этом ее содержания. За счет уровня представления информация, передаваемая прикладным уровнем одной системы, всегда понятна прикладному уровню другой системы. С помощью средств данного уровня протоколы прикладных уровней могут преодолеть синтаксические различия в представлении данных или же различия в кодах символов, например ASCII и EBCDIC. Главными функциями уровня представления являются шифрование данных, их сжатие и кодовое преобразование.Прикладной уровеньПрикладной уровень представляет набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделенным ресурсам: файлам, принтерам или гипертекстовым WEB-страницам. электронной почте. Существует большое разнообразие служб прикладного уровня. Например,  NCP  в операционной системе Novell Net Ware, SMB в Microsoft Windows NT, NFS, FTP и TFTP, входящие в стек TCP/IP.

Для каждого приложения требуется свое собственное программное обеспечение (т.е. свои паритетные процессы). На более  нижних уровнях выполняются те части общей задачи, которые требуются для многих различных приложений, а на прикладном уровне  выполняется    та часть работы, которая специфична для конкретного приложения.

Сетезависимые и сетенезависимые уровниФункции всех уровней модели OSI  могут быть отнесены к одной из двух групп: либо к функциям, зависящим от конкретной технической реализации сети, либо к функциям, ориентированным на работу с приложением. Три нижних уровня — физический, канальный и сетевой — являются сетезависимыми,т.е. протоколы этих уровней тесно связаны с технической реализацией сети и используемым коммуникационным оборудованием.

Три верхних уровня — прикладной, представительный и сеансовый — ориентированы на приложения и мало зависят от технических особенностей построения сети. На протоколы этих уровней не влияют какие бы то ни было изменения в топологии сети, замена оборудования или переход на другую сетевую технологию.

Транспортный уровень является промежуточным, он скрывает все детали функционирования нижних уровней от верхних. Это позволяет разрабатывать приложения, не зависящие от технических средств непосредственной транспортировки сообщений.

msbro.ru

Характеристика уровней модели OSI/ISO

Модель взаимодействия открытых систем (Open System Interconnection, OSI) определяет различные уровни взаимодействия систем в сетях с коммутацией пакетов, дает им стандартные имена и указывает, какие функции должен выполнять каждый уровень.

Модель OSI была разработана на основании большого опыта, полученного при создании компьютерных сетей, в основном глобальных, в 70-е годы.

В модели OSI средства взаимодействия делятся на семь уровней: прикладной, представительный, сеансовый, транспортный, сетевой, канальный и физический. Каждый уровень имеет дело с определенным аспектом взаимодействия сетевых устройств.

Физический уровень имеет дело с передачей битов по физическим каналам связи, таким, как коаксиальный кабель, витая пара, оптоволоконный кабель или цифровой территориальный канал. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие.

Одной из задач канального уровня является проверка доступности среды передачи. Другая задача канального уровня – реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frames). Канальный уровень обеспечивает корректность передачи каждого кадра.

Сетевой уровень служит для образования единой транспортной системы, объединяющей несколько сетей, причем эти сети могут использовать различные принципы передачи сообщений между конечными узлами и обладать произвольной структурой связей. Внутри одной сети доставка данных обеспечивается канальным уровнем, а вот доставкой данных между различными сетями занимается сетевой уровень, который и поддерживает возможность правильного выбора маршрута передачи сообщения даже в том случае, когда структура связей между составляющими сетями имеет характер, отличный от принятого в протоколах канального уровня.

Сети соединяются между собой специальными устройствами, называемыми маршрутизаторами. Маршрутизатор – это устройство, которое собирает информацию о топологии межсетевых соединений и пересылает пакеты сетевого уровня в сеть назначения. Чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач между сетями.

Транспортный уровень обеспечивает приложениям или верхним уровням стека – прикладному и сеансовому – передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное – способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

Сеансовый уровень обеспечивает управление диалогом: фиксирует, какая из сторон является активной в настоящий момент, предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, а не начинать все сначала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется в виде отдельных протоколов, хотя функции этого уровня часто объединяют с функциями прикладного уровня и реализуют в одном протоколе.

Представительный уровень имеет дело с формой представления передаваемой по сети информации, не меняя при этом ее содержания. За счет уровня представления информация, передаваемая прикладным уровнем одной системы, всегда понятна прикладному уровню другой системы. С помощью средств данного уровня протоколы прикладных уровней могут преодолеть синтаксические различия в представлении данных или же различия в кодах символов, например, в кодах ASCII и EBCDIC. На этом уровне может выполняться шифрование и дешифрование данных, благодаря которому секретность обмена данными обеспечивается сразу для всех прикладных служб. Примером такого протокола является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сообщениями для протоколов прикладного уровня стека TCP/IP.

Прикладной уровень – это набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют совместную работу, например, с помощью протокола электронной почты. Единица данных, которой оперирует прикладной уровень, обычно называется сообщением.

Функции всех уровней модели OSI могут быть отнесены к одной из двух групп: либо к функциям, зависящим от конкретной технической реализации сети, либо к функциям, ориентированным на работу с приложениями.

Три нижних уровня – физический, канальный и сетевой – являются сетезависимыми, то есть протоколы этих уровней тесно связаны с технической реализацией сети и используемым коммуникационным оборудованием.

Три верхних уровня – прикладной, представительный и сеансовый - ориентированы на приложения и мало зависят от технических особенностей построения сети. На протоколы этих уровней не влияют какие бы то ни было изменения в топологии сети, замена оборудования или переход на другую сетевую технологию.

Транспортный уровень является промежуточным, он скрывает все детали функционирования нижних уровней от верхних. Это позволяет разрабатывать приложения, не зависящие от технических средств непосредственной транспортировки сообщений.

Столь подробное рассмотрение модели OSI/ISO связано с тем, что при разработке стандартов и спецификации по сетевой безопасности специалисты ориентируются на эту перспективную модель. Так в "Общих критериях" приводится распределение функций безопасности по уровням эталонной семиуровневой модели OSI.

Функции безопасности Уровень OSI
Аутентификация - - + + - - +
Управление доступом - - + + - - +
Конфиденциальность соединения + + + + - + +
Конфиденциальность вне соединения - + + + - + +
Избирательная конфиденциальность - - - - - + +
Конфиденциальность трафика + - + - - - +
Целостность с восстановлением - - - + - - +
Целостность без восстановления - - + + - - +
Избирательная целостность - - - - - - +
Целостность вне соединения - - + + - - +
Неотказуемость - - - - - - +

"+" – данный уровень может предоставить функцию безопасности;

"-" – данный уровень не подходит для предоставления функции безопасности.

Выводы по теме

1. Модель взаимодействия открытых систем (Open System Interconnection, OSI) определяет различные уровни взаимодействия систем в сетях с коммутацией пакетов, дает им стандартные имена и указывает, какие функции должен выполнять каждый уровень.

2. Многоуровневое представление средств сетевого взаимодействия имеет свою специфику, связанную с тем, что в процессе обмена сообщениями участвуют две стороны, то есть в данном случае необходимо организовать согласованную работу двух "иерархий", работающих на разных компьютерах.

3. В модели OSI средства взаимодействия делятся на семь уровней: прикладной, представительный, сеансовый, транспортный, сетевой, канальный и физический. Каждый уровень имеет дело с определенным аспектом взаимодействия сетевых устройств.

4. Функции всех уровней модели OSI могут быть отнесены к одной из двух групп: либо к функциям, зависящим от конкретной технической реализации сети, либо к функциям, ориентированным на работу с приложениями.

5. Три нижних уровня – физический, канальный и сетевой – являются сетезависимыми, то есть протоколы этих уровней тесно связаны с технической реализацией сети и используемым коммуникационным оборудованием.

6. Три верхних уровня – прикладной, представительный и сеансовый – ориентированы на приложения и мало зависят от технических особенностей построения сети.

7. Транспортный уровень является промежуточным, он скрывает все детали функционирования нижних уровней от верхних.

Вопросы для самоконтроля

1. Проведите сравнительную характеристику моделей передачи данных TCP/IP и OSI/ISO.

2. Перечислите уровни модели OSI/ISO.

3. Назначение прикладного и представительного уровней модели OSI/ISO.

4. Какие функции выполняет транспортный уровень?

5. Назначение сетевого уровня и его характеристика.

6. Какие физические устройства реализуют функции канального уровня?

7. В чем особенности физического уровня модели OSI/ISO?

8. На каких уровнях модели OSI/ISO должна обеспечиваться аутентификация?

9. На каком уровне модели OSI/ISO реализуется сервис безопасности "неотказуемость" (согласно "Общим критериям")?

Похожие статьи:

poznayka.org

Характеристика уровней модели OSI/ISO

Поиск Лекций

Модель взаимодействия открытых систем (Open System Interconnection, OSI) определяет различные уровни взаимодействия систем в сетях с коммутацией пакетов, дает им стандартные имена и указывает, какие функции должен выполнять каждый уровень.

Модель OSI была разработана на основании большого опыта, полученного при создании компьютерных сетей, в основном глобальных, в 70-е годы.

В модели OSI средства взаимодействия делятся на семь уровней: прикладной, представительный, сеансовый, транспортный, сетевой, канальный и физический. Каждый уровень имеет дело с определенным аспектом взаимодействия сетевых устройств.

Физический уровень имеет дело с передачей битов по физическим каналам связи, таким, как коаксиальный кабель, витая пара, оптоволоконный кабель или цифровой территориальный канал. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие.

Одной из задач канального уровня является проверка доступности среды передачи. Другая задача канального уровня – реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frames). Канальный уровень обеспечивает корректность передачи каждого кадра.

Сетевой уровень служит для образования единой транспортной системы, объединяющей несколько сетей, причем эти сети могут использовать различные принципы передачи сообщений между конечными узлами и обладать произвольной структурой связей. Внутри одной сети доставка данных обеспечивается канальным уровнем, а вот доставкой данных между различными сетями занимается сетевой уровень, который и поддерживает возможность правильного выбора маршрута передачи сообщения даже в том случае, когда структура связей между составляющими сетями имеет характер, отличный от принятого в протоколах канального уровня.

Сети соединяются между собой специальными устройствами, называемыми маршрутизаторами. Маршрутизатор – это устройство, которое собирает информацию о топологии межсетевых соединений и пересылает пакеты сетевого уровня в сеть назначения. Чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач между сетями.

Транспортный уровень обеспечивает приложениям или верхним уровням стека – прикладному и сеансовому – передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное – способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

Сеансовый уровень обеспечивает управление диалогом: фиксирует, какая из сторон является активной в настоящий момент, предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, а не начинать все сначала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется в виде отдельных протоколов, хотя функции этого уровня часто объединяют с функциями прикладного уровня и реализуют в одном протоколе.

Представительный уровень имеет дело с формой представления передаваемой по сети информации, не меняя при этом ее содержания. За счет уровня представления информация, передаваемая прикладным уровнем одной системы, всегда понятна прикладному уровню другой системы. С помощью средств данного уровня протоколы прикладных уровней могут преодолеть синтаксические различия в представлении данных или же различия в кодах символов, например, в кодах ASCII и EBCDIC. На этом уровне может выполняться шифрование и дешифрование данных, благодаря которому секретность обмена данными обеспечивается сразу для всех прикладных служб. Примером такого протокола является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сообщениями для протоколов прикладного уровня стека TCP/IP.

Прикладной уровень – это набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют совместную работу, например, с помощью протокола электронной почты. Единица данных, которой оперирует прикладной уровень, обычно называется сообщением.

Функции всех уровней модели OSI могут быть отнесены к одной из двух групп: либо к функциям, зависящим от конкретной технической реализации сети, либо к функциям, ориентированным на работу с приложениями.

Три нижних уровня – физический, канальный и сетевой – являются сетезависимыми, то есть протоколы этих уровней тесно связаны с технической реализацией сети и используемым коммуникационным оборудованием.

Три верхних уровня – прикладной, представительный и сеансовый - ориентированы на приложения и мало зависят от технических особенностей построения сети. На протоколы этих уровней не влияют какие бы то ни было изменения в топологии сети, замена оборудования или переход на другую сетевую технологию.

Транспортный уровень является промежуточным, он скрывает все детали функционирования нижних уровней от верхних. Это позволяет разрабатывать приложения, не зависящие от технических средств непосредственной транспортировки сообщений.

Столь подробное рассмотрение модели OSI/ISO связано с тем, что при разработке стандартов и спецификации по сетевой безопасности специалисты ориентируются на эту перспективную модель. Так в "Общих критериях" приводится распределение функций безопасности по уровням эталонной семиуровневой модели OSI.

Функции безопасности Уровень OSI
Аутентификация - - + + - - +
Управление доступом - - + + - - +
Конфиденциальность соединения + + + + - + +
Конфиденциальность вне соединения - + + + - + +
Избирательная конфиденциальность - - - - - + +
Конфиденциальность трафика + - + - - - +
Целостность с восстановлением - - - + - - +
Целостность без восстановления - - + + - - +
Избирательная целостность - - - - - - +
Целостность вне соединения - - + + - - +
Неотказуемость - - - - - - +

"+" – данный уровень может предоставить функцию безопасности;

"-" – данный уровень не подходит для предоставления функции безопасности.

Выводы по теме

1. Модель взаимодействия открытых систем (Open System Interconnection, OSI) определяет различные уровни взаимодействия систем в сетях с коммутацией пакетов, дает им стандартные имена и указывает, какие функции должен выполнять каждый уровень.

2. Многоуровневое представление средств сетевого взаимодействия имеет свою специфику, связанную с тем, что в процессе обмена сообщениями участвуют две стороны, то есть в данном случае необходимо организовать согласованную работу двух "иерархий", работающих на разных компьютерах.

3. В модели OSI средства взаимодействия делятся на семь уровней: прикладной, представительный, сеансовый, транспортный, сетевой, канальный и физический. Каждый уровень имеет дело с определенным аспектом взаимодействия сетевых устройств.

4. Функции всех уровней модели OSI могут быть отнесены к одной из двух групп: либо к функциям, зависящим от конкретной технической реализации сети, либо к функциям, ориентированным на работу с приложениями.

5. Три нижних уровня – физический, канальный и сетевой – являются сетезависимыми, то есть протоколы этих уровней тесно связаны с технической реализацией сети и используемым коммуникационным оборудованием.

6. Три верхних уровня – прикладной, представительный и сеансовый – ориентированы на приложения и мало зависят от технических особенностей построения сети.

7. Транспортный уровень является промежуточным, он скрывает все детали функционирования нижних уровней от верхних.

Вопросы для самоконтроля

1. Проведите сравнительную характеристику моделей передачи данных TCP/IP и OSI/ISO.

2. Перечислите уровни модели OSI/ISO.

3. Назначение прикладного и представительного уровней модели OSI/ISO.

4. Какие функции выполняет транспортный уровень?

5. Назначение сетевого уровня и его характеристика.

6. Какие физические устройства реализуют функции канального уровня?

7. В чем особенности физического уровня модели OSI/ISO?

8. На каких уровнях модели OSI/ISO должна обеспечиваться аутентификация?

9. На каком уровне модели OSI/ISO реализуется сервис безопасности "неотказуемость" (согласно "Общим критериям")?

poisk-ru.ru

Вопрос 1-28 - УРОВНИ БАЗОВОЙ МОДЕЛИ ОТКРЫТЫХ СИСТЕМ OSI

7

У РОВНИ БАЗОВОЙ МОДЕЛИ ОТКРЫТЫХ СИСТЕМOSI / ISO.

УРОВНИ БАЗОВОЙ МОДЕЛИ ОТКРЫТЫХ СИСТЕМ OSI / ISO.

Проектировщики вычислительных сетей часто используют семиуровневую модель ISO/OSI (International Standards Organization/Open Systems Interconnect, Международная организация по стандартизации/ Взаимодействие открытых систем), которая описывает архитектуру сетей. Каждый уровень в этой модели соответствует одному уровню функциональных возможностей сети. В самом основании располагается физический уровень, представляющий физическую среду, по которой "путешествуют" данные, - другими словами, кабельную систему вычислительной сети. Над ним имеется канальный уровень, или уровень звена данных, функционирование которого обеспечивается сетевыми интерфейсными платами. На самом верху размещается уровень прикладных программ, где работают программы, использующие служебные функции сетей.

ФУНКЦИИ УРОВНЕЙ МОДЕЛИ ISO/OSI

Физический уровень. Этот уровень имеет дело с передачей битов по физическим каналам, таким, например, как коаксиальный кабель, витая пара или оптоволоконный кабель. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие. На этом же уровне определяются характеристики электрических сигналов, такие как требования к фронтам импульсов, уровням напряжения или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов. Кроме этого, здесь стандартизуются типы разъемов и назначение каждого контакта.

Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом.

Примером протокола физического уровня может служить спецификация 10Base-T технологии Ethernet, которая определяет в качестве используемого кабеля неэкранированную витую пару категории 3 с волновым сопротивлением 100 Ом, разъем RJ-45, максимальную длину физического сегмента 100 метров, манчестерский код для представления данных на кабеле, и другие характеристики среды и электрических сигналов.

Канальный уровень. На физическом уровне просто пересылаются биты. При этом не учитывается, что в некоторых сетях, в которых линии связи используются (разделяются) попеременно несколькими парами взаимодействующих компьютеров, физическая среда передачи может быть занята. Поэтому одной из задач канального уровня является проверка доступности среды передачи. Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frames). Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит в начало и конец каждого кадра, чтобы отметить его, а также вычисляет контрольную сумму, суммируя все байты кадра определенным способом и добавляя контрольную сумму к кадру. Когда кадр приходит, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка.

В протоколах канального уровня, используемых в локальных сетях, заложена определенная структура связей между компьютерами и способы их адресации. Хотя канальный уровень и обеспечивает доставку кадра между любыми двумя узлами локальной сети, он это делает только в сети с совершенно определенной топологией связей, именно той топологией, для которой он был разработан. К таким типовым топологиям, поддерживаемым протоколами канального уровня локальных сетей, относятся общая шина, кольцо и звезда. Примерами протоколов канального уровня являются протоколы Ethernet, Token Ring, FDDI, 100VG-AnyLAN.

В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.

В глобальных сетях, которые редко обладают регулярной топологией, канальный уровень обеспечивает обмен сообщениями между двумя соседними компьютерами, соединенными индивидуальной линией связи. Примерами протоколов "точка - точка" (как часто называют такие протоколы) могут служить широко распространенные протоколы PPP и LAP-B.

Сетевой уровень. Этот уровень служит для образования единой транспортной системы, объединяющей несколько сетей с различными принципами передачи информации между конечными узлами. Рассмотрим функции сетевого уровня на примере локальных сетей. Протокол канального уровня локальных сетей обеспечивает доставку данных между любыми узлами только в сети с соответствующей типовой топологией. Это очень жесткое ограничение, которое не позволяет строить сети с развитой структурой, например, сети, объединяющие несколько сетей предприятия в единую сеть, или высоконадежные сети, в которых существуют избыточные связи между узлами. Для того, чтобы, с одной стороны, сохранить простоту процедур передачи данных для типовых топологий, а с другой стороны, допустить использование произвольных топологий, используется дополнительный сетевой уровень. На этом уровне вводится понятие "сеть". В данном случае под сетью понимается совокупность компьютеров, соединенных между собой в соответствии с одной из стандартных типовых топологий и использующих для передачи данных один из протоколов канального уровня, определенный для этой топологии.

Таким образом, внутри сети доставка данных регулируется канальным уровнем, а вот доставкой данных между сетями занимается сетевой уровень.

Сообщения сетевого уровня принято называть пакетами (packets). При организации доставки пакетов на сетевом уровне используется понятие "номер сети". В этом случае адрес получателя состоит из номера сети и номера компьютера в этой сети.

Сети соединяются между собой специальными устройствами, называемыми маршрутизаторами. Маршрутизатор - это устройство, которое собирает информацию о топологии межсетевых соединений и на ее основании пересылает пакеты сетевого уровня в сеть назначения. Для того, чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач (hops) между сетями, каждый раз выбирая подходящий маршрут. Таким образом, маршрут представляет собой последовательность маршрутизаторов, через которые проходит пакет.

Проблема выбора наилучшего пути называется маршрутизацией и ее решение является главной задачей сетевого уровня. Эта проблема осложняется тем, что самый короткий путь не всегда самый лучший. Часто критерием при выборе маршрута является время передачи данных по этому маршруту, оно зависит от пропускной способности каналов связи и интенсивности трафика, которая может изменяться с течением времени. Некоторые алгоритмы маршрутизации пытаются приспособиться к изменению нагрузки, в то время, как другие принимают решения на основе средних показателей за длительное время. Выбор маршрута может осуществляться и по другим критериям, например, надежности передачи.

На сетевом уровне определяется два вида протоколов. Первый вид относится к определению правил передачи пакетов с данными конечных узлов от узла к маршрутизатору и между маршрутизаторами. Именно эти протоколы обычно имеют в виду, когда говорят о протоколах сетевого уровня. К сетевому уровню относят и другой вид протоколов, называемых протоколами обмена маршрутной информацией. С помощью этих протоколов маршрутизаторы собирают информацию о топологии межсетевых соединений. Протоколы сетевого уровня реализуются программными модулями операционной системы, а также программными и аппаратными средствами маршрутизаторов.

Примерами протоколов сетевого уровня являются протокол межсетевого взаимодействия IP стека TCP/IP и протокол межсетевого обмена пакетами IPX стека Novell.

Транспортный уровень. На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Хотя некоторые приложения имеют собственные средства обработки ошибок, существуют и такие, которые предпочитают сразу иметь дело с надежным соединением. Работа транспортного уровня заключается в том, чтобы обеспечить приложениям или верхним уровням стека - прикладному и сеансовому - передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное - способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

Выбор класса сервиса транспортного уровня определяется, с одной стороны, тем, в какой степени задача обеспечения надежности решается самими приложениями и протоколами более высоких, чем транспортный, уровней, а с другой стороны, этот выбор зависит от того, насколько надежной является вся система транспортировки данных в сети. Так, например, если качество каналов передачи связи очень высокое, и вероятность возникновения ошибок, не обнаруженных протоколами более низких уровней, невелика, то разумно воспользоваться одним из облегченных сервисов транспортного уровня, не обремененных многочисленными проверками, квитированием и другими приемами повышения надежности. Если же транспортные средства изначально очень ненадежны, то целесообразно обратиться к наиболее развитому сервису транспортного уровня, который работает, используя максимум средств для обнаружения и устранения ошибок - с помощью предварительного установления логического соединения, контроля доставки сообщений с помощью контрольных сумм и циклической нумерации пакетов, установления тайм-аутов доставки и т.п.

Как правило, все протоколы, начиная с транспортного уровня и выше, реализуются программными средствами конечных узлов сети - компонентами их сетевых операционных систем. В качестве примера транспортных протоколов можно привести протоколы TCP и UDP стека TCP/IP и протокол SPX стека Novell.

Сеансовый уровень. Сеансовый уровень обеспечивает управление диалогом для того, чтобы фиксировать, какая из сторон является активной в настоящий момент, а также предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, вместо того, чтобы начинать все с начала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется.

Уровень представления. Этот уровень обеспечивает гарантию того, что информация, передаваемая прикладным уровнем, будет понятна прикладному уровню в другой системе. При необходимости уровень представления выполняет преобразование форматов данных в некоторый общий формат представления, а на приеме, соответственно, выполняет обратное преобразование. Таким образом, прикладные уровни могут преодолеть, например, синтаксические различия в представлении данных. На этом уровне может выполняться шифрование и дешифрование данных, благодаря которому секретность обмена данными обеспечивается сразу для всех прикладных сервисов. Примером протокола, работающего на уровне представления, является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сообщениями для протоколов прикладного уровня стека TCP/IP.

Прикладной уровень. Прикладной уровень - это в действительности просто набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют свою совместную работу, например, с помощью протокола электронной почты. Единица данных, которой оперирует прикладной уровень, обычно называется сообщением (message).

----------------------------------------------------------------------------------------------------

На рисунке показано, как TCP/IP согласуется с моделью ISO/OSI. Этот рисунок также иллюстрирует уровневое строение TCP/IP и показывает взаимосвязи между основными протоколами. При переносе блока данных из сетевой прикладной программы в плату сетевого адаптера он последовательно проходит через ряд модулей TCP/IP. При этом на каждом шаге он доукомплектовывается информацией, необходимой для эквивалентного модуля TCP/IP на другом конце цепочки. К тому моменту, когда данные попадают в сетевую плату, они представляют собой стандартный кадр Ethernet, если предположить, что сеть основана именно на этом интерфейсе. Программное обеспечение TCP/IP на приемном конце воссоздает исходные данные для принимающей программы путем захвата кадра Ethernet и прохождения его в обратном порядке по набору модулей TCP/IP. (Один из наилучших способов разобраться во внутреннем устройстве TCP/IP стоит в использовании программы-"шпиона", чтобы найти внутри кадров, "пролетающих" по сети, информацию, добавленную различными модулями TCP/IP.)

Уровни сетей и протоколы TCP/IP

ISO/OSI TCP/IP

_____________________________ __________________________

| Уровень прикладных программ | | |

|_____________________________| | _________ _________ |

_____________________________ | |Сетевая | |Сетевая | | Уровень

| Уровень представления | | |программа| |программа| | прикладных

|_____________________________| | |_________| |_________| | программ

_____________________________ | |

| Уровень сеанса | | |

|_____________________________| |__________________________|

| |

_____________________________ _____|_____________|______

| Транспортный уровень | | TCP UDP | Транспортный

|_____________________________| |_____|_____________|______| уровень

| |

_____________________________ _____|_____________|______

| Сетевой уровень | | | | | Сетевой

|_____________________________| | ----> IP <--- | уровень

|__________________________|

_________

_____________________________ _______| Сетевая |________

| Уровень звена данных | | ARP<->| плата |<->RARP | Уровень

|_____________________________| |_______|_________|________| звена

| данных

_____________________________ |

| Физический уровень | _____________|______________ Физический

|_____________________________| Кабельные соединения сети уровень

В левой части этой диаграммы показаны уровни модели ISO/OSI. Правая часть диаграммы иллюстрирует корреляцию TCP/IP с этой моделью.

Для иллюстрации роли, которую TCP/IP играет в вычислительных сетях в реальном мире, рассмотрим, что происходит, когда Web-браузер использует HTTP (HyperText Transfer Protocol, протокол передачи гипертекста) для извлечения страницы HTML-данных из Web-сервера, подключенного к Internet. Для формирования виртуального подключения к серверу браузер использует абстракцию программного обеспечения высокого уровня, называемую гнездом (socket). А чтобы извлечь страницу Web, он посылает на сервер команду GET HTTP, записывая ее в гнездо. Программное обеспечение гнезда, в свою очередь, применяет TCP для пересылки битов и байтов, составляющих команду GET на Web-сервер. TCP сегментирует данные и передает отдельные сегменты модулю IP, который пересылает сегменты в дейтаграммах на Web-сервер.

Если браузер и сервер работают на компьютерах, подключенных к различным физическим сетям (как это обычно бывает), дейтаграммы передаются от сети к сети до тех пор, пока не достигнут той, к которой физически подключен сервер. В конце концов дейтаграммы достигают пункта своего назначения и вновь собираются таким образом, чтобы Web-сервер, который считывает цепочки данных из своего гнезда, получал непрерывный поток данных. Для браузера и сервера данные, записанные в гнездо на одном конце, как по волшебству, "всплывают" на другом конце. Но между этими событиями происходят все виды сложных взаимодействий для создания иллюзии непрерывной передачи данных между вычислительными сетями.

И это практически все, чем занимается TCP/IP: превращением множества небольших сетей в одну большую и предоставлением услуг, которые нужны прикладным программам для обмена информацией друг с другом по получающейся в итоге Internet.

Краткое заключение

О TCP/IP можно было бы рассказать много больше, но есть три ключевых момента:

1. TCP/IP - это набор протоколов, которые позволяют физическим сетям объединяться вместе для образования Internet. TCP/IP соединяет индивидуальные сети для образования виртуальной вычислительной сети, в которой отдельные главные компьютеры идентифицируются не физическими адресами сетей, а IP-адресами.

2. В TCP/IP используется многоуровневая архитектура, которая четко описывает, за что отвечает каждый протокол. TCP и UDP обеспечивают высокоуровневые служебные функции передачи данных для сетевых программ, и оба опираются на IP при передаче пакетов данных. IP отвечает за маршрутизацию пакетов до их пункта назначения.

3. Данные, перемещающиеся между двумя прикладными программами, работающими на главных компьютерах Internet, "путешествуют" вверх и вниз по стекам TCP/IP на этих компьютерах. Информация, добавленная модулями TCP/IP на стороне отправителя, "разрезается" соответствующими TCP/IP-модулями на принимающем конце и используется для воссоздания исходных данных.

studfiles.net

Модель osi

Понятие “открытая система” и проблемы стандартизации

Универсальный тезис о пользе стандартизации, справедливый для всех отраслей, в компьютерных сетях приобретает особое значение. Суть сети — это соединение разного оборудования, а значит, проблема совместимости является одной из наи­более острых. Без принятия всеми производителями общепринятых правил пост­роения оборудования прогресс в деле “строительства” сетей был бы невозможен. Поэтому все развитие компьютерной отрасли в конечном счете отражено в стан­дартах — любая новая технология только тогда приобретает “законный” статус, когда ее содержание закрепляется в соответствующем стандарте.

В компьютерных сетях идеологической основой стандартизации является мно­гоуровневый подход к разработке средств сетевого взаимодействия. Именно на основе этого подхода была разработана стандартная семиуровневая модель взаи­модействия открытых систем, ставшая своего рода универсальным языком сетевых специалистов.

Многоуровневый подход. Протокол. Интерфейс. Стек протоколов

Организация взаимодействия между устройствами в сети является сложной зада­чей. Как известно, для решения сложных задач используется универсальный при­ем — декомпозиция, то есть разбиение одной сложной задачи на несколько более простых задач-модулей (рис. 1.20). Процедура декомпозиции включает в себя четкое определение функций каждого модуля, решающего отдельную задачу, и интер­фейсов между ними. В результате достигается логическое упрощение задачи, а кроме того, появляется возможность модификации отдельных модулей без изменения остальной части системы.

При декомпозиции часто используют многоуровневый подход. Он заключается в следующем. Все множество модулей разбивают на уровни. Уровни образуют иерар­хию, то есть имеются вышележащие и нижележащие уровни (рис. 1.21). Множе­ство модулей, составляющих каждый уровень, сформировано таким образом, что для выполнения своих задач они обращаются с запросами только к модулям не­посредственно примыкающего нижележащего уровня. С другой стороны, результа­ты работы всех модулей, принадлежащих некоторому уровню, могут быть переданы только модулям соседнего вышележащего уровня. Такая иерархическая деком­позиция задачи предполагает четкое определение функции каждого уровня и интерфейсов между уровнями. Интерфейс определяет набор функций, которые нижележащий уровень предоставляет вышележащему. В результате иерархической декомпозиции достигается относительная независимость уровней, а значит, и воз­можность их легкой замены.

При этом модули нижне­го уровня могут, например, решать все вопросы, связанные с надежной передачей электрических сигналов между двумя соседними узлами. Модули более высокого уровня организуют транспортировку сообщений в пределах всей сети, пользуясь для этого средствами упомянутого нижележащего уровня. А на верхнем уровне работают модули, предоставляющие пользователям доступ к различным службам — файловой, печати и т. п. Конечно, это только один из множества возможных вариантов деления общей задачи организации сетевого взаимодействия на частные под­задачи.

Многоуровневый подход к описанию и реализации функций системы применя­ется не только в отношении сетевых средств. Такая модель функционирования используется, например, в локальных файловых системах, когда поступивший за­прос на доступ к файлу последовательно обрабатывается несколькими программ­ными уровнями (рис. 1.22). Запрос вначале анализируется верхним уровнем, на котором осуществляется последовательный разбор составного символьного имени файла и определение уникального идентификатора файла. Следующий уровень находит по уникальному имени все основные характеристики файла: адрес, атри­буты доступа и т. п. Затем на более низком уровне осуществляется проверка прав доступа к этому файлу, а далее, после расчета координат области файла, содержа­щей требуемые данные, выполняется физический обмен с внешним устройством с помощью драйвера диска.

Многоуровневое представление средств сетевого взаимодействия имеет свою специфику, связанную с тем, что в процессе обмена сообщениями участвуют две машины, то есть в данном случае необходимо организовать согласованную работу двух “иерархий”. При передаче сообщений оба участника сетевого обмена должны принять множество соглашений. Например, они должны согласовать уровни и форму электрических сигналов, способ определения длины сообщений, договориться о методах контроля достоверности и т. п. Другими словами, соглашения должны быть приняты для всех уровней, начиная от самого низкого — уровня передачи битов — до самого высокого, реализующего сервис для пользователей сети.

На рис. 1.23 показана модель взаимодействия двух узлов. С каждой стороны средства взаимодействия представлены четырьмя уровнями. Процедура взаимо­действия этих двух узлов может быть описана в виде набора правил взаимодей­ствия каждой пары соответствующих уровней обеих участвующих сторон.

Формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах, называются протоколом.

Модули, реализующие протоколы соседних уровней и находящиеся в одном узле, также взаимодействуют друг с другом в соответствии с четко определенными правилами и с помощью стандартизованных форматов сообщений. Эти правила принято называть интерфейсом. Интерфейс определяет набор сервисов, предо­ставляемый данным уровнем соседнему уровню.

В сущности, протокол и интер­фейс выражают одно и то же понятие, но традиционно в сетях за ними закрепили разные области действия: протоколы определяют правила взаимодействия моду­лей одного уровня в разных узлах, а интерфейсы — модулей соседних уровней в одном узле.

Средства каждого уровня должны отрабатывать, во-первых, свой собственный протокол, а во-вторых, интерфейсы с соседними уровнями.

Иерархически организованный набор протоколов, достаточный для организа­ции взаимодействия узлов в сети, называется стеком коммуникационных прото­колов.

Коммуникационные протоколы могут быть реализованы как программно, так и аппаратно. Протоколы нижних уровней часто реализуются комбинацией программ­ных и аппаратных средств, а протоколы верхних уровней — как правило, чисто программными средствами.

Программный модуль, реализующий некоторый протокол, часто для краткости также называют “протоколом”. При этом соотношение между протоколом — фор­мально определенной процедурой и протоколом — программным модулем, реали­зующим эту процедуру, аналогично соотношению между алгоритмом решения некоторой задачи и программой, решающей эту задачу.

Понятно, что один и тот же алгоритм может быть запрограммирован с разной степенью эффективности. Точно так же и протокол может иметь несколько про­граммных реализации. Именно поэтому при сравнении протоколов следует учиты­вать не только логику их работы, но и качество программных решений. Более того, на эффективность взаимодействия устройств в сети влияет качество всей совокуп­ности протоколов, составляющих стек, в частности, насколько рационально рас­пределены функции между протоколами разных уровней и насколько хорошо определены интерфейсы между ними.

Модель OSI

Из того, что протокол является соглашением, принятым двумя взаимодействую­щими объектами, в данном случае двумя работающими в сети компьютерами, со­всем не следует, что он обязательно является стандартным. Но на практике при реализации сетей стремятся использовать стандартные протоколы. Это могут быть фирменные, национальные или международные стандарты.

В начале 80-х годов ряд международных организаций по стандартизации — ISO, ITU-T и некоторые другие, разработали модель, которая сыграла значительную роль в развитии сетей. Эта модель называется моделью взаимодействия открытых систем (Open System Interconnection, OSI) или моделью OSI. Модель OSI определя­ет различные уровни взаимодействия систем, дает им стандартные имена и указы­вает, какие функции должен выполнять каждый уровень. Модель OSI была разработана на основании большого опыта, полученного при создании компьютер­ных сетей, в основном глобальных, в 70-е годы. Полное описание этой модели занимает более 1000 страниц текста.

В модели OSI (рис. 1.25) средства взаимодействия делятся на семь уровней:

  1. Прикладной

  2. Представительный

  3. Сеансовый

  4. Транспортный

  5. Сетевой

  6. Канальный

  7. Физический.

Каждый уровень имеет дело с одним определенным аспектом взаимо­действия сетевых устройств.

Модель OSI описывает только системные средства взаимодействия, реализуе­мые операционной системой, системными утилитами, системными аппаратными средствами. Модель не включает средства взаимодействия приложений конечных пользователей. Свои собственные протоколы взаимодействия приложения реали­зуют, обращаясь к системным средствам. Поэтому необходимо различать уровень взаимодействия приложений и прикладной уровень.

Следует также иметь в виду, что приложение может взять на себя функции некоторых верхних уровней модели OSI. Например, некоторые СУБД имеют встро­енные средства удаленного доступа к файлам. В этом случае приложение, выпол­няя доступ к удаленным ресурсам, не использует системную файловую службу: оно обходит верхние уровни модели OSI и обращается напрямую к системным средствам, ответственным за транспортировку сообщений по сети, которые распо­лагаются на нижних уровнях модели OSI.

Итак, пусть приложение обращается с запросом к прикладному уровню, напри­мер к файловой службе. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата. Обычное сооб­щение состоит из заголовка и поля данных. Заголовок содержит служебную информацию, которую необходимо передать через сеть прикладному уровню ма­шины-адресата, чтобы сообщить ему, какую работу надо выполнить. В нашем слу­чае заголовок, очевидно, должен содержать информацию о месте нахождения файла и о типе операции, которую необходимо над ним выполнить. Поле данных сообще­ния может быть пустым или содержать какие-либо данные, например те, которые необходимо записать в удаленный файл. Но для того чтобы доставить эту ин­формацию по назначению, предстоит решить еще много задач, ответственность за которые несут нижележащие уровни.

После формирования сообщения прикладной уровень направляет его вниз по стеку представительному уровню. Протокол представительного уровня на основа­нии информации, полученной из заголовка прикладного уровня, выполняет требу­емые действия и добавляет к сообщению собственную служебную информацию — заголовок представительного уровня, в котором содержатся указания для протоко­ла представительного уровня машины-адресата. Полученное в результате сообще­ние передается вниз сеансовому уровню, который в свою очередь добавляет свой заголовок, и т. д. (Некоторые реализации протоколов помещают служебную ин­формацию не только в начале сообщения в виде заголовка, но и в конце, в виде так называемого “концевика”-.) Наконец, сообщение достигает нижнего, физического уровня, который собственно и передает его по линиям связи машине-адресату. К этому моменту сообщение “обрастает” заголовками всех уровней (рис. 1.26).

Когда сообщение по сети поступает на машину-адресат, оно принимается ее физическим уровнем и последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует и обрабатывает заголовок своего уровня, выполняя соответствующие данному уровню функции, а затем удаляет этот заголовок и пе­редает сообщение вышележащему уровню.

Наряду с термином сообщение (message) существуют и другие термины, приме­няемые сетевыми специалистами для обозначения единиц данных в процедурах обмена. В стандартах ISO для обозначения единиц данных, с которыми имеют дело протоколы разных уровней, используется общее название протокольный блок данных (Protocol Data Unit, PDU). Для обозначения блоков данных определенных уровней-часто используются специальные названия: кадр (frame), пакет (packet), дейта­грамма (datagram), сегмент (segment).

В модели OSI различаются два основных типа протоколов. В протоколах с установлением соединения (connection-oriented) перед обменом данными отправитель и получатель должны сначала установить соединение и, возможно, выбрать неко­торые параметры протокола, которые они будут использовать при обмене данны­ми. После завершения диалога они должны разорвать это соединение. Телефон — это пример взаимодействия, основанного на установлении соединения.

Вторая группа протоколов — протоколы без предварительного установления со­единения (connectionless). Такие протоколы называются также дейтаграммнылш про­токолами. Отправитель просто передает сообщение, когда оно готово. Опускание письма в почтовый ящик — это пример связи без предварительного установления соединения. При взаимодействии компьютеров используются протоколы обоих типов.

Уровни модели OSI

Физический уровень

физический уровень (Physical layer) имеет дело с передачей битов по физическим каналам связи, таким, например, как коаксиальный кабель, витая пара, оптоволо­конный кабель или цифровой территориальный канал. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие. На этом же уровне определяются характеристики электрических сигналов, передающих диск­ретную информацию, например, крутизна фронтов импульсов, уровни напряже­ния или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов. Кроме этого, здесь стандартизуются типы разъемов и назначение каждого контакта.

Функции физического уровня реализуются во всех устройствах, подключен­ных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом.

Примером протокола физического уровня может служить спецификация 1OBase-T технологии Ethernet, которая определяет в качестве используемого кабеля неэкра­нированную витую пару категории 3 с волновым сопротивлением 100 Ом, разъем RJ-45, максимальную длину физического сегмента 100 метров, манчестерский код для представления данных в кабеле, а также некоторые другие характеристики среды и электрических сигналов.

Канальный уровень

На физическом уровне просто пересылаются биты. При этом не учитывается, что в некоторых сетях, в которых линии связи используются (разделяются) поперемен­но несколькими парами взаимодействующих компьютеров, физическая среда пе­редачи может быть занята. Поэтому одной из задач канального уровня (Data Link layer) является проверка доступности среды передачи. Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frames). Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит в начало и конец каждого кадра, для его выделения, а также вычисляет контрольную сумму, обрабатывая все байты кадра определенным способом и добавлял контрольную сумму к кадру. Когда кадр приходит по сети, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпада­ют, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка. Канальный уровень может не только обнаруживать ошибки, но и исправлять их за счет повторной передачи поврежденных кадров. Необходимо отметить, что функция исправления ошибок не является обя­зательной для канального уровня, поэтому в некоторых протоколах этого уровня она отсутствует, например, в Ethernet и frame relay.

В протоколах канального уровня, используемых в локальных сетях, заложена определенная структура связей между компьютерами и способы их адресации. Хотя канальный уровень и обеспечивает доставку кадра между любыми двумя узлами локальной сети, он это делает только в сети с совершенно определенной топологи­ей связей, именно той топологией, для которой он был разработан. К таким типо­вым топологиям, поддерживаемым протоколами канального уровня локальных сетей, относятся общая шина, кольцо и звезда, а также структуры, полученные из них с помощью мостов и коммутаторов. Примерами протоколов канального уров­ня являются протоколы Ethernet, Token Ring, FDDI, lOOVG-AnyLAN.

В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канально­го уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.

В глобальных сетях, которые редко обладают регулярной топологией, каналь­ный уровень часто обеспечивает обмен сообщениями только между двумя соседни­ми компьютерами, соединенными индивидуальной линией связи. Примерами протоколов “точка-точка” (как часто называют такие протоколы) могут служить широко распространенные протоколы РРР и LAP-B. В таких случаях для достав­ки сообщений между конечными узлами через всю сеть используются средства сетевого уровня. Именно так организованы сети Х.25. Иногда в глобальных сетях функции канального уровня в чистом виде выделить трудно, так как в одном и том же протоколе они объединяются с функциями сетевого уровня. Примерами такого подхода могут служить протоколы технологий АТМ и frame relay.

В целом канальный уровень представляет собой весьма мощный и законченный набор функций по пересылке сообщений между узлами сети. В некоторых случаях протоколы канального уровня оказываются самодостаточными транспортными средствами и могут допускать работу поверх них непосредственно протоколов при­кладного уровня или приложений, без привлечения средств сетевого и транспорт­ного уровней. Например, существует реализация протокола управления сетью SNMP непосредственно поверх Ethernet, хотя стандартно этот протокол работает поверх сетевого протокола IP и транспортного протокола UDP. Естественно, что примене­ние такой реализации будет ограниченным — она не подходит для составных сетей разных технологий, например Ethernet и Х.25, и даже для такой сети, в которой во всех сегментах применяется Ethernet, но между сегментами существуют петлевид-ные связи. А вот в двухсегментной сети Ethernet, объединенной мостом, реализа­ция SNMP над канальным уровнем будет вполне работоспособна.

Тем не менее, для обеспечения качественной транспортировки сообщений в се­тях любых топологий и технологий функций канального уровня оказывается недо­статочно, поэтому в модели OSI решение этой задачи возлагается на два следующих уровня — сетевой и транспортный.

Сетевой уровень

Сетевой уровень (Network layer) служит для образования единой транспортной системы, объединяющей несколько сетей, причем эти сети могут использовать совершенно различные принципы передачи сообщений между конечными узлами и обладать произвольной структурой связей. Функции сетевого уровня достаточно разнообразны. Начнем их рассмотрение на примере объединения локальных сетей.

Протоколы канального уровня локальных сетей обеспечивают доставку данных между любыми узлами только в сети с соответствующей типовой топологией, на­пример топологией иерархической звезды. Это очень жесткое ограничение, кото­рое не позволяет строить сети с развитой структурой, например, сети, объединяющие несколько сетей предприятия в единую сеть, или высоконадежные сети, в которых существуют избыточные связи между узлами. Можно было бы усложнять прото­колы канального уровня для поддержания петлевидных избыточных связей, но принцип разделения обязанностей между уровнями приводит к другому решению. Чтобы с одной стороны сохранить простоту процедур передачи данных для типо­вых топологии, а с другой допустить использование произвольных топологий, вво­дится дополнительный сетевой уровень.

На сетевом уровне сам термин сеть наделяют специфическим значением. В дан­ном случае под сетью понимается совокупность компьютеров, соединенных между собой в соответствии с одной из стандартных типовых топологий и использующих для передачи данных один из протоколов канального уровня, определенный для этой топологии.

Внутри сети доставка данных обеспечивается соответствующим канальным уров­нем, а вот доставкой данных между сетями занимается сетевой уровень, который и поддерживает возможность правильного выбора маршрута передачи сообщения даже в том случае, когда структура связей между составляющими сетями имеет характер, отличный от принятого в протоколах канального уровня.

Сети соединяются между собой специальными устройствами, называемыми маршрутизаторами. Маршрутизатор — это устройство, которое собирает инфор­мацию о топологии межсетевых соединений и на ее основании пересылает пакеты сетевого уровня в сеть назначения. Чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно со­вершить некоторое количество транзитных передач между сетями, или хопов (от hop — прыжок), каждый раз, выбирая подходящий маршрут. Таким образом, марш­рут представляет собой последовательность маршрутизаторов, через которые про­ходит пакет.

На рис. 1.27 показаны четыре сети, связанные тремя маршрутизаторами. Меж­ду узлами А и В данной сети пролегают два маршрута: первый через маршрутиза­торы 1 и 3, а второй через маршрутизаторы 1,2 и 3.

Проблема выбора наилучшего пути называется маршрутизацией, и ее решение является одной из главных задач сетевого уровня. Эта проблема осложняется тем, что самый короткий путь не всегда самый лучший. Часто критерием при выборе маршрута является время передачи данных по этому маршруту; оно зависит от пропускной способности каналов связи и интенсивности графика, которая может изменяться с течением времени. Некоторые алгоритмы маршрутизации пытаются приспособиться к изменению нагрузки, в то время как другие принимают решения на основе средних показателей за длительное время. Выбор маршрута может осу­ществляться и по другим критериям, например надежности передачи.

В общем случае функции сетевого уровня шире, чем функции передачи сооб­щений по связям с нестандартной структурой, которые мы сейчас рассмотрели на примере объединения нескольких локальных сетей. Сетевой уровень решает также задачи согласования разных технологии, упрощения адресации в крупных сетях и создания надежных и гибких барьеров на пути нежелательного трафика между сетями.

Сообщения сетевого уровня принято называть пакетами (packets). При органи­зации доставки пакетов на сетевом уровне используется понятие “номер сети”. В этом случае адрес получателя состоит из старшей части — номера сети и млад­шей — номера узла в этой сети. Все узлы одной сети должны иметь одну и ту же старшую часть адреса, поэтому термину “сеть” на сетевом уровне можно дать и другое, более формальное определение: сеть — это совокупность узлов, сетевой ад­рес которых содержит один и тот же номер сети.

На сетевом уровне определяются два вида протоколов. Первый вид — сетевые протоколы (routedprotocols) — реализуют продвижение пакетов через сеть. Именно эти протоколы обычно имеют в виду, когда говорят о протоколах сетевого уровня. Однако часто к сетевому уровню относят и другой вид протоколов, называемых протоколами обмена маршрутной информацией или просто протоколами маршру­тизации (routing protocols). С помощью этих протоколов маршрутизаторы собира­ют информацию о топологии межсетевых соединений. Протоколы сетевого уровня реализуются программными модулями операционной системы, а также" программ­ными и аппаратными средствами маршрутизаторов.

На сетевом уровне работают протоколы еще одного типа, которые отвечают за отображение адреса узла, используемого на сетевом уровне, в локальный адрес сети. Такие протоколы часто называют протоколами разрешения адресов — Address Resolution Protocol, ARP. Иногда их относят не к сетевому уровню, а к канальному, хотя тонкости классификации не изменяют их сути.

Примерами протоколов сетевого уровня являются протокол межсетевого взаи­модействия IP стека TCP/IP и протокол межсетевого обмена пакетами IPX стека Novell.

Транспортный уровень

На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Хотя некоторые приложения имеют собственные средства обработки ошибок, существуют и такие, которые предпочитают сразу иметь дело с надежным соедине­нием. Транспортный уровень (Transport layer) обеспечивает приложениям или верх­ним уровням стека — прикладному и сеансовому — передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между раз­личными прикладными протоколами через общий транспортный протокол, а глав­ное — способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

Выбор класса сервиса транспортного уровня определяется, с одной стороны, тем, в какой степени задача обеспечения надежности решается самими прило­жениями и протоколами более высоких, чем транспортный, уровней, а с другой стороны, этот выбор зависит от того, насколько надежной является система транспортировки данных в сети, обеспечиваемая уровнями, расположенными ниже транспортного — сетевым, канальным и физическим. Так, например, если качество каналов передачи связи очень высокое и вероятность возникновения ошибок, не обнаруженных протоколами более низких уровней, невелика, то разумно воспользоваться одним из облегченных сервисов транспортного уров­ня, не обремененных многочисленными проверками, квитированием и другими приемами повышения надежности. Если же транспортные средства нижних уровней изначально очень ненадежны, то целесообразно обратиться к наиболее развитому сервису транспортного уровня, который работает, используя макси­мум средств, для обнаружения и устранения ошибок, — с помощью предвари­тельного установления логического соединения, контроля доставки сообщений по контрольным суммам и циклической нумерации пакетов, установления тайм-аутов доставки и т. п.

Как правило, все протоколы, начиная с транспортного уровня и выше, реализу­ются программными средствами конечных узлов сети — компонентами их сетевых операционных систем. В качестве примера транспортных протоколов можно при­вести протоколы TCP и UDP стека TCP/IP и протокол SPX стека Novell.

Протоколы нижних четырех уровней обобщенно называют сетевым транспор­том или транспортной подсистемой, так как они полностью решают задачу транс­портировки сообщений с заданным уровнем качества в составных сетях с произвольной топологией и различными технологиями. Остальные три верхних уровня решают задачи предоставления прикладных сервисов на основании имею­щейся транспортной подсистемы.

Сеансовый уровень

Сеансовый уровень (Session layer) обеспечивает управление диалогом: фиксирует, какая из сторон является активной в настоящий момент, предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней конт­рольной точке, а не начинать все с начала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется в виде отдельных протоко­лов, хотя функции этого уровня часто объединяют с функциями прикладного уровня и реализуют в одном протоколе.

Представительный уровень

Представительный уровень (Presentation layer) имеет дело с формой представле­ния передаваемой по сети информации, не меняя при этом ее содержания. За счет уровня представления информация, передаваемая прикладным уровнем одной си­стемы, всегда понятна прикладному уровню другой системы. С помощью средств данного уровня протоколы прикладных уровней могут преодолеть синтаксические различия в представлении данных или же различия в кодах символов, например кодов ASCII и EBCDIC. На этом уровне может выполняться шифрование и де­шифрование данных, благодаря которому секретность обмена данными обеспечи­вается сразу для всех прикладных служб. Примером такого протокола является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сооб­щениями для протоколов прикладного уровня стека TCP/IP.

Прикладной уровень

Прикладной уровень (Application layer) — это в действительности просто набор разнообразных протоколов, с помощью которых пользователи сети получают до­ступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют свою совместную работу, например, с помо­щью протокола электронной почты. Единица данных, которой оперирует приклад­ной уровень, обычно называется сообщением (message).

Существует очень большое разнообразие служб прикладного уровня. Приведем в качестве примера хотя бы несколько наиболее распространенных реализации файловых служб: NCP в операционной системе Novell NetWare, SMB в Microsoft Windows NT, NFS, FTP и TFTP, входящие в стек TCP/IP.

Сетезависимые и сетенезависимые уровни

Функции всех уровней модели OSI могут быть отнесены к одной из двух групп:

либо к функциям, зависящим от конкретной технической реализации сети, либо к функциям, ориентированным на работу с приложениями.

Три нижних уровня — физический, канальный и сетевой — являются сетезависимыми, то есть протоколы этих уровней тесно связаны с технической реализаци­ей сети и используемым коммуникационным оборудованием. Например, переход на оборудование FDDI означает полную смену протоколов физического и каналь­ного уровней во всех узлах сети.

Три верхних уровня — прикладной, представительный и сеансовый — ориенти­рованы на приложения и мало зависят от технических особенностей построения сети. На протоколы этих уровней не влияют какие бы то ни было изменения в топологии сети, замена оборудования или переход на другую сетевую технологию. Так, переход от Ethernet на высокоскоростную технологию lOOVG-AnyLAN не по­требует никаких изменений в программных средствах, реализующих функции при­кладного, представительного и сеансового уровней.

Транспортный уровень является промежуточным, он скрывает все детали функ­ционирования нижних уровней от верхних. Это позволяет разрабатывать прило­жения, не зависящие от технических средств непосредственной транспортировки сообщений.

На рис. 1.28 показаны уровни модели OSI, на которых работают различные элементы сети. Компьютер с установленной на нем сетевой ОС взаимодейству­ет с другим компьютером с помощью протоколов всех семи уровней. Это взаимодействие компьютеры осуществляют опосредовано через различные коммуникационные устройства: концентраторы, модемы, мосты, коммутаторы, маршрутизаторы, мультиплексоры. В зависимости от типа коммуникационное устройство может работать либо только на физическом уровне (повторитель), либо на физическом и канальном (мост), либо на физическом, канальном и сетевом, иногда захватывая и транспортный уровень (маршрутизатор).

На рис. 1.29 показано соответствие функций различных коммуникационных устройств уровням модели OSI.

Модель OSI представляет хотя и очень важную, но только одну из многих мо­делей коммуникаций. Эти модели и связанные с ними стеки протоколов могут отличаться количеством уровней, их функциями, форматами сообщений, службами, поддерживаемыми на верхних уровнях, и прочими параметрами.

studfiles.net

Модель OSI - это... Что такое Модель OSI?

Сеансовый уровень (англ. Session layer)

5-й уровень модели отвечает за поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время. Уровень управляет созданием/завершением сеанса, обменом информацией, синхронизацией задач, определением права на передачу данных и поддержанием сеанса в периоды неактивности приложений. Синхронизация передачи обеспечивается помещением в поток данных контрольных точек, начиная с которых возобновляется процесс при нарушении взаимодействия.

Транспортный уровень (англ. Transport layer)

4-й уровень модели предназначен для доставки данных без ошибок, потерь и дублирования в той последовательности, как они были переданы. При этом не важно, какие данные передаются, откуда и куда, то есть он предоставляет сам механизм передачи. Блоки данных он разделяет на фрагменты, размер которых зависит от протокола, короткие объединяет в один, а длинные разбивает. Протоколы этого уровня предназначены для взаимодействия типа точка-точка. Пример: UDP.

Существует множество классов протоколов транспортного уровня, начиная от протоколов, предоставляющих только основные транспортные функции (например, функции передачи данных без подтверждения приема), и заканчивая протоколами, которые гарантируют доставку в пункт назначения нескольких пакетов данных в надлежащей последовательности, мультиплексируют несколько потоков данных, обеспечивают механизм управления потоками данных и гарантируют достоверность принятых данных.

Некоторые протоколы сетевого уровня, называемые протоколами без установки соединения, не гарантируют, что данные доставляются по назначению в том порядке, в котором они были посланы устройством-источником. Некоторые транспортные уровни справляются с этим, собирая данные в нужной последовательности до передачи их на сеансовый уровень. Мультиплексирование (multiplexing) данных означает, что транспортный уровень способен одновременно обрабатывать несколько потоков данных (потоки могут поступать и от различных приложений) между двумя системами. Механизм управления потоком данных — это механизм, позволяющий регулировать количество данных, передаваемых от одной системы к другой. Протоколы транспортного уровня часто имеют функцию контроля доставки данных, заставляя принимающую данные систему отправлять подтверждения передающей стороне о приеме данных.

Сетевой уровень (англ. Network layer)

3-й уровень сетевой модели OSI предназначен для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию, отслеживание неполадок и заторов в сети. На этом уровне работает такое сетевое устройство, как маршрутизатор.

Протоколы сетевого уровня маршрутизируют данные от источника к получателю и могут быть разделены на два класса: протоколы с установкой соединения и без него.

Описать работу протоколов с установкой соединения можно на примере работы обычного телефона. Протоколы этого класса начинают передачу данных с вызова или установки маршрута следования пакетов от источника к получателю. После чего начинают последовательную передачу данных и затем по окончании передачи разрывают связь.

Протоколы без установки соединения, которые посылают данные, содержащие полную адресную информацию в каждом пакете, работают аналогично почтовой системе. Каждое письмо или пакет содержит адрес отправителя и получателя. Далее каждый промежуточный почтамт или сетевое устройство считывает адресную информацию и принимает решение о маршрутизации данных. Письмо или пакет данных передается от одного промежуточного устройства к другому до тех пор, пока не будет доставлено получателю. Протоколы без установки соединения не гарантируют поступление информации получателю в том порядке, в котором она была отправлена. За установку данных в соответствующем порядке при использовании сетевых протоколов без установки соединения отвечают транспортные протоколы.

Канальный уровень (англ. Data Link layer)

Этот уровень предназначен для обеспечения взаимодействия сетей на физическом уровне и контроля за ошибками, которые могут возникнуть. Полученные с физического уровня данные он упаковывает во фреймы, проверяет на целостность, если нужно исправляет ошибки (посылает повторный запрос поврежденного кадра) и отправляет на сетевой уровень. Канальный уровень может взаимодействовать с одним или несколькими физическими уровнями, контролируя и управляя этим взаимодействием. Спецификация IEEE 802 разделяет этот уровень на 2 подуровня — MAC (Media Access Control) регулирует доступ к разделяемой физической среде, LLC (Logical Link Control) обеспечивает обслуживание сетевого уровня.

На этом уровне работают коммутаторы, мосты.

В программировании этот уровень представляет драйвер сетевой платы, в операционных системах имеется программный интерфейс взаимодействия канального и сетевого уровней между собой, это не новый уровень, а просто реализация модели для конкретной ОС. Примеры таких интерфейсов: ODI,

Физический уровень (англ. Physical layer)

Самый нижний уровень модели предназначен непосредственно для передачи потока данных. Осуществляет передачу электрических или оптических сигналов в кабель или в радиоэфир и, соответственно, их приём и преобразование в биты данных в соответствии с методами кодирования цифровых сигналов. Другими словами, осуществляет интерфейс между сетевым носителем и сетевым устройством.

На этом уровне работают концентраторы (хабы), повторители (ретрансляторы) сигнала и медиаконверторы.

Функции физического уровня реализуются на всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом. К физическому уровню относятся физические, электрические и механические интерфейсы между двумя системами. Физический уровень определяет такие свойства среды сети передачи данных как оптоволокно, витая пара, коаксиальный кабель, спутниковый канал передач данных и т. п. Стандартными типами сетевых интерфейсов, относящимися к физическому уровню, являются: V.35, RS-232C, RJ-45, разъемы BNC.

Модель OSI и реальные протоколы

Семиуровневая модель OSI является теоретической, и содержит ряд недоработок. Были попытки строить сети в точном соответствии с моделью OSI, но созданные таким образом сети были дорогими, ненадёжными и неудобными в эксплуатации. Реальные сетевые протоколы, используемые в существующих сетях, вынуждены отклоняться от неё, обеспечивая непредусмотренные возможности, поэтому привязка некоторых из них к уровням OSI является несколько условной: некоторые протоколы занимают несколько уровней модели OSI, функции обеспечения надёжности реализованы на нескольких уровнях модели OSI.

Основная недоработка OSI — непродуманный транспортный уровень. На нём OSI позволяет обмен данными между приложениями (вводя понятие порта — идентификатора приложения), однако, возможность обмена простыми датаграммами (по типу UDP) в OSI не предусмотрена — транспортный уровень должен образовывать соединения, обеспечивать доставку, управлять потоком и т. п. (по типу TCP). Реальные же протоколы реализуют такую возможность.

Семейство TCP/IP

Семейство TCP/IP имеет три транспортных протокола: TCP, полностью соответствующий OSI, обеспечивающий проверку получения данных, UDP, отвечающий транспортному уровню только наличием порта, обеспечивающий обмен датаграммами между приложениями, не гарантирующий получения данных и ICMP, используемый для внутренних нужд обеспечения работы; остальные также не являются транспортными протоколами.)

Семейство IPX/SPX

В семействе IPX/SPX порты (называемые «сокеты» или «гнёзда») появляются в протоколе сетевого уровня IPX, обеспечивая обмен датаграммами между приложениями (операционная система резервирует часть сокетов для себя). Протокол SPX, в свою очередь, дополняет IPX всеми остальными возможностями транспортного уровня в полном соответствии с OSI.

В качестве адреса хоста IPX использует идентификатор, образованный из четырёхбайтного номера сети (назначаемого маршрутизаторами) и MAC-адреса сетевого адаптера.

Модель DOD

Стек протоколов TCP/IP, использующий упрощённую четырёхуровневую модель OSI.

См. также

Источники

  • Александр Филимонов Построение мультисервисных сетей Ethernet, bhv, 2007 ISBN 978-5-9775-0007-4
  • Руководство по технологиям объединенных сетей //cisco systems , 4-е издание, Вильямс 2005 ISBN 584590787X

dic.academic.ru

3.1 Семиуровневая модель взаимодействия открытых систем osi/iso.

Тема: Изучение механизма инкапсуляции в пакетных сетях передачи данных

Цель: Исследование процесса инкапсуляции данных при передаче в сети Ethernet. Изучение функциональных возможностей программного анализатора пакетов Wireshark.

Ключевые положения

Семиуровневая модель взаимодействия открытых систем (Open Systems Interconnection, OSI) предложена Международной организацией по стандартизации (International Organization for Standardization, ISO). Модель OSI/ ISO предполагает, что все сетевые приложения можно подразделить на семь уровней, для каждого из которых созданы свои стандарты и общие модели. В результате задача сетевого взаимодействия делится на меньшие и более легкие задачи, тем самым обеспечивая совместимость между продуктами разных производителей и упрощая разработку приложений за счёт создания отдельных уровней и использования уже существующих реализаций.

Структура модели OSI/ISO

Единица взаимодействия

Уровень

Функции

Данные

Data

Application Layer (уровень приложений)

обеспечивает услугами прикладные процессы, лежащие за пределами масштаба модели OSI

Presentation Layer (уровень представлений)

осуществляет трансляцию между множеством форматов представления информации

Session Layer (сеансовый уровень)

устанавливает, управляет и завершает сеансы взаимодействия между прикладными задачами

Сегменты

Segments

Transport Layer (транспортный уровень)

обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком

Пакет

Packet

Network Layer (сетевой уровень)

обеспечивает возможность соединения и выбор маршрута между двумя конечными системами

Фрейм

Frame

Data Link Layer (канальный уровень)

обеспечивает надежный транзит данных через физический канал

Бит

Bit

Physical Layer (физический уровень)

определяет электротехнические, механические, процедурные и функциональные характеристики установления, поддержания и разъединения физического канала между конечными системами

Теоретически, каждый уровень должен взаимодействовать с аналогичным уровнем удаленного компьютера. На практике каждый из них, за исключением физического, взаимодействует с выше- и нижележащими уровнями – представляет услуги вышележащему и пользуется услугами нижележащего. В реальной ситуации на одном компьютере независимо друг от друга иногда выполняется несколько реализаций одного уровня.

1. Физический уровень. На данном уровне основной рассматриваемой единицей передачи информации является бит (bit), передаваемый тем или иным способом. В контексте данного уровня рассматривается среда передачи и протоколы организации передачи. Физический уровень описывает физические свойства (например, электромеханические характеристики) среды и сигналов, переносящих информацию. Это физические характеристики кабелей и разъемов, уровни напряжений и электрического сопротивления и.т.д., в том числе, например, спецификация кабеля «неэкранированная витая пара» (unshielded twisted pair, UTP).

2. Канальный уровень. Основной рассматриваемой единицей является фрейм (frame)1. Фрейм – особым образом объединенная группа битов физического уровня, к которому добавляется битовый заголовок, содержащий аппаратные адреса отправителя и получателя, контрольную сумму для определения целостности фрейма и некоторые флаги, управляющие процессом передачи. На данном уровне работает процесс коммутации фреймов. Сам термин коммутация следует понимать как процесс проключения канала от получателя к отправителю. К функциям данного уровня можно отнести также контроль целостности фрейма (защиту от помех и ошибок). Как пример протоколов можно привести протоколы Ethernet (IEEE 802.3), WLAN (IEEE 802.11a/b/g/n).

Канальный уровень обеспечивает перенос данных по физической среде. Он поделен на два подуровня: управления логическим каналом (logical link control, LLC) и управления доступом к среде (media access control, MAC). Такое деление позволяет одному уровню LLC использовать различные реализации уровня MAC. Уровень MAC работает с применяемым в Ethernet и Token-Ring физическими адресами, которые «вшиты» в сетевые адаптеры их производителями. Следует различать физические и логические (например, IP) адреса. С последним работает сетевой уровень.

3. Сетевой уровень. Основной рассматриваемой единицей является пакет. Функцией данного уровня является объединение сетей. Под сетью в данном контексте понимается группа устройств - узлов (хостов) сети, которые объединены с помощью единой технологии канального уровня. На данном уровне работает процесс маршрутизации – выбора оптимального маршрута передачи пакета. Пакет представляет собой информационный блок, содержащий информацию канального уровня в качестве нагрузки, плюс заголовок, содержащий сетевые адреса отправителя и получателя и служебную информацию.

В отличие от канального уровня, имеющего дело с физическими адресами, сетевой уровень работает с логическими адресами. Сетевой уровень предоставляет транспортному уровню услуги с установлением соединения (connection-oriented), например Х.25, или без установления такового (connectionless) например IP (internet protocol).

4. Транспортный уровень. Протоколы транспортного уровня обеспечивают надежную передачу данных для протоколов более высоких уровней или для приложений. К функциям уровня относятся обнаружение и исправление ошибок при передаче сообщения, контроль доставки, или восстановление аварийно прерванной связи, фрагментация пакетов с целью оптимизировать доставку сообщений. Транспортный уровень предоставляет услуги, аналогично услугам сетевого уровня. Надежность гарантируют лишь некоторые (не все) реализации сетевых уровней, поэтому ее относят к числу функций, выполняемых транспортным уровнем.

5. Сеансовый уровень. Отвечает за поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время. Сеанс – это логическое соединение между двумя конечными пунктами. Сеансовый уровень следит также за очередностью передачи данных. Эту функцию называют «управление диалогом» (dialog management). Уровень управляет созданием/завершением сеанса, обменом информацией, синхронизацией задач, определением права на передачу данных и поддержанием сеанса в периоды неактивности приложений.

6. Уровень представлений. На данном уровне обеспечивается кодирование исходного сообщения. Представительный уровень позволяет двум стекам протоколов «договариваться» о синтаксисе (представлении) передаваемых друг другу данных. Поскольку гарантий одинакового представления информации нет, то этот уровень при необходимости переводит данные из одного вида в другой. К примерам можно отнести представление текста в кодировке ASCII или Unicode, сжатие видео MPEG, и т.п.

7. Уровень приложений. Это высший уровень в модели OSI/ISO. На этом уровне выполняться конкретные приложения, которые пользуются услугами представительного уровня (и косвенно – всех остальных). Это может быть обмен электронной почтой, пересылка файлов и любое другое сетевое приложение. Основной задачей данного уровня является организация интерфейса между объектом – отправителем сообщения, представление сообщения в машинно-обрабатываемом виде и передача его на более низкие уровни модели.

Чтобы упростить понимание модели, рассмотрим работу модели на конкретном примере работы сети (рис 3.1).

Рисунок 3.1 – Пример работы сети

Пользователь вводит имя сайта. Предполагается, что IP адрес сайта уже известен, поэтому нет необходимости обращаться к DNS серверу. Web-браузер формирует HTTP-запрос. Так отрабатывают уровни приложений, представлений и сеансовый уровень.

На транспортном уровне работает протокол TCP. Процессу выделяется локальный порт 1200, указывается соответствующий HTTP протоколу порт сервера 80 и осуществляется процедуры трехстороннего взаимодействия и согласования размера окна передачи с целью установления TCP соединения.

На сетевом уровне добавляются IP адрес получателя и отправителя, формируется IP пакеты и направляется в сторону шлюза (маршрутизатора) в соответствии с таблицей маршрутизации пользовательского ПК.

Далее на канальном уровне к пакету добавляется аппаратный MAC-адрес ПК, с помощью протокола ARP определяется MAC-адрес получателя и формируется фрейм канального уровня.

На выходе Ethernet-адаптера формируется сигнал, который подается по кабелю UTP пятой категории на порт коммутатора. Коммутатор выделяет из сигнала и анализирует полученный фрейм согласно таблице MAC-адресов и по оптоволокну передает его на порт маршрутизатора.

Маршрутизатор выделяет из фрейма и анализирует IP пакет и перенаправляет его в соответствии с таблицей маршрутизации на свой интерфейс, относящийся к сети Web-сервера. Далее опять работают функции канального и физического уровней. Получив и обработав информацию, процесс Web-сервера формирует HTTP-отклик и передает его в обратном направлении.

Естественно, это описание дано крайне упрощенно и не в полной мере отражает все процедуры, осуществляющиеся на каждом из уровней. Однако в данном случае можно увидеть основное преимущество данной модели.

studfiles.net